BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 17473170)

  • 1. Multipotent hematopoietic cells susceptible to alternative double-strand break repair pathways that promote genome rearrangements.
    Francis R; Richardson C
    Genes Dev; 2007 May; 21(9):1064-74. PubMed ID: 17473170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequent chromosomal translocations induced by DNA double-strand breaks.
    Richardson C; Jasin M
    Nature; 2000 Jun; 405(6787):697-700. PubMed ID: 10864328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rad51 overexpression promotes alternative double-strand break repair pathways and genome instability.
    Richardson C; Stark JM; Ommundsen M; Jasin M
    Oncogene; 2004 Jan; 23(2):546-53. PubMed ID: 14724582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BRCA1 regulates RAD51 function in response to DNA damage and suppresses spontaneous sister chromatid replication slippage: implications for sister chromatid cohesion, genome stability, and carcinogenesis.
    Cousineau I; Abaji C; Belmaaza A
    Cancer Res; 2005 Dec; 65(24):11384-91. PubMed ID: 16357146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The requirement for recombination factors differs considerably between different pathways of homologous double-strand break repair in somatic plant cells.
    Roth N; Klimesch J; Dukowic-Schulze S; Pacher M; Mannuss A; Puchta H
    Plant J; 2012 Dec; 72(5):781-90. PubMed ID: 22860689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of Rad51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths.
    Paffett KS; Clikeman JA; Palmer S; Nickoloff JA
    DNA Repair (Amst); 2005 Jun; 4(6):687-98. PubMed ID: 15878310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double-strand breaks repair by gene conversion in silkworm holocentric chromosomes.
    Mon H; Lee J; Kawaguchi Y; Kusakabe T
    Mol Genet Genomics; 2011 Oct; 286(3-4):215-24. PubMed ID: 21842267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair.
    Weinstock DM; Elliott B; Jasin M
    Blood; 2006 Jan; 107(2):777-80. PubMed ID: 16195334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks.
    Povirk LF
    DNA Repair (Amst); 2006 Sep; 5(9-10):1199-212. PubMed ID: 16822725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor cell kill by c-MYC depletion: role of MYC-regulated genes that control DNA double-strand break repair.
    Luoto KR; Meng AX; Wasylishen AR; Zhao H; Coackley CL; Penn LZ; Bristow RG
    Cancer Res; 2010 Nov; 70(21):8748-59. PubMed ID: 20940401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression.
    Karlsson A; Deb-Basu D; Cherry A; Turner S; Ford J; Felsher DW
    Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9974-9. PubMed ID: 12909717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. To nick or not to nick: comparison of I-SceI single- and double-strand break-induced recombination in yeast and human cells.
    Katz SS; Gimble FS; Storici F
    PLoS One; 2014; 9(2):e88840. PubMed ID: 24558436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PUMA facilitates EMI1-promoted cytoplasmic Rad51 ubiquitination and inhibits DNA repair in stem and progenitor cells.
    Kang JW; Zhan Z; Ji G; Sang Y; Zhou D; Li Y; Feng H; Cheng T
    Signal Transduct Target Ther; 2021 Mar; 6(1):129. PubMed ID: 33785736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations.
    Richardson C; Moynahan ME; Jasin M
    Genes Dev; 1998 Dec; 12(24):3831-42. PubMed ID: 9869637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosomal translocations induced at specified loci in human stem cells.
    Brunet E; Simsek D; Tomishima M; DeKelver R; Choi VM; Gregory P; Urnov F; Weinstock DM; Jasin M
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10620-5. PubMed ID: 19549848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling oncogenic translocations: distinct roles for double-strand break repair pathways in translocation formation in mammalian cells.
    Weinstock DM; Richardson CA; Elliott B; Jasin M
    DNA Repair (Amst); 2006 Sep; 5(9-10):1065-74. PubMed ID: 16815104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of homologous recombination by treatment with BVDU (brivudin) or by RAD51 silencing increases chromosomal damage induced by bleomycin in mismatch repair-deficient tumour cells.
    Vernole P; Muzi A; Volpi A; Dorio AS; Terrinoni A; Shah GM; Graziani G
    Mutat Res; 2009 May; 664(1-2):39-47. PubMed ID: 19428379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient method to generate chromosomal rearrangements by targeted DNA double-strand breaks in Drosophila melanogaster.
    Egli D; Hafen E; Schaffner W
    Genome Res; 2004 Jul; 14(7):1382-93. PubMed ID: 15197166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA damage, homology-directed repair, and DNA methylation.
    Cuozzo C; Porcellini A; Angrisano T; Morano A; Lee B; Di Pardo A; Messina S; Iuliano R; Fusco A; Santillo MR; Muller MT; Chiariotti L; Gottesman ME; Avvedimento EV
    PLoS Genet; 2007 Jul; 3(7):e110. PubMed ID: 17616978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term haematopoietic reconstitution by Trp53-/-p16Ink4a-/-p19Arf-/- multipotent progenitors.
    Akala OO; Park IK; Qian D; Pihalja M; Becker MW; Clarke MF
    Nature; 2008 May; 453(7192):228-32. PubMed ID: 18418377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.