BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 17473216)

  • 1. Roles of the calcineurin and CaMK signaling pathways in fast-to-slow fiber type transformation of cultured adult mouse skeletal muscle fibers.
    Mu X; Brown LD; Liu Y; Schneider MF
    Physiol Genomics; 2007 Aug; 30(3):300-12. PubMed ID: 17473216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcineurin-mediated slow-type fiber expression and growth in reloading condition.
    Miyazaki M; Hitomi Y; Kizaki T; Ohno H; Katsumura T; Haga S; Takemasa T
    Med Sci Sports Exerc; 2006 Jun; 38(6):1065-72. PubMed ID: 16775546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Both myoblast lineage and innervation determine fiber type and are required for expression of the slow myosin heavy chain 2 gene.
    DiMario JX; Stockdale FE
    Dev Biol; 1997 Aug; 188(1):167-80. PubMed ID: 9245520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type.
    Wu H; Naya FJ; McKinsey TA; Mercer B; Shelton JM; Chin ER; Simard AR; Michel RN; Bassel-Duby R; Olson EN; Williams RS
    EMBO J; 2000 May; 19(9):1963-73. PubMed ID: 10790363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blockades of mitogen-activated protein kinase and calcineurin both change fibre-type markers in skeletal muscle culture.
    Higginson J; Wackerhage H; Woods N; Schjerling P; Ratkevicius A; Grunnet N; Quistorff B
    Pflugers Arch; 2002 Dec; 445(3):437-43. PubMed ID: 12466948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of ryanodine receptor 1 in fast skeletal muscle fibers induces a fast-to-slow muscle fiber type transition.
    Jordan T; Jiang H; Li H; DiMario JX
    J Cell Sci; 2004 Dec; 117(Pt 25):6175-83. PubMed ID: 15564379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parvalbumin deficiency in fast-twitch muscles leads to increased 'slow-twitch type' mitochondria, but does not affect the expression of fiber specific proteins.
    Racay P; Gregory P; Schwaller B
    FEBS J; 2006 Jan; 273(1):96-108. PubMed ID: 16367751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of chronic electrical stimulation on myosin heavy chain expression in satellite cell cultures derived from rat muscles of different fiber-type composition.
    Wehrle U; Düsterhöft S; Pette D
    Differentiation; 1994 Nov; 58(1):37-46. PubMed ID: 7867895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in acetylcholine receptor function induce shifts in muscle fiber type composition.
    Jin TE; Wernig A; Witzemann V
    FEBS J; 2008 May; 275(9):2042-54. PubMed ID: 18384381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of the calcineurin signaling pathway to overload-induced skeletal muscle fiber-type transition.
    Miyazaki M; Hitomi Y; Kizaki T; Ohno H; Haga S; Takemasa T
    J Physiol Pharmacol; 2004 Dec; 55(4):751-64. PubMed ID: 15613741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TnIfast IRE enhancer: multistep developmental regulation during skeletal muscle fiber type differentiation.
    Hallauer PL; Hastings KE
    Dev Dyn; 2002 Aug; 224(4):422-31. PubMed ID: 12203734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The asymmetric molecular forms of AChE and the expression of collagen Q in mature and immature fast and slow rat muscles.
    Glisović S; Trinkaus M; Pregelj P; Sketelj J
    Chem Biol Interact; 2010 Sep; 187(1-3):90-5. PubMed ID: 20188715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of myostatin expression alters fiber-type distribution and expression of myosin heavy chain isoforms in slow- and fast-type skeletal muscle.
    Girgenrath S; Song K; Whittemore LA
    Muscle Nerve; 2005 Jan; 31(1):34-40. PubMed ID: 15468312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled differentiation of myoblast cells into fast and slow muscle fibers.
    Matsuoka Y; Inoue A
    Cell Tissue Res; 2008 Apr; 332(1):123-32. PubMed ID: 18278513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein kinase C signaling controls skeletal muscle fiber types.
    DiMario JX
    Exp Cell Res; 2001 Feb; 263(1):23-32. PubMed ID: 11161702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural occurrence of fast- and fast/slow-muscle chimeric fibers in the expression of troponin T isoforms.
    Nakada K; Miyazaki JI; Saba R; Hirabayashi T
    Exp Cell Res; 1997 Aug; 235(1):93-9. PubMed ID: 9281356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulation of acetylcholinesterase-associated collagen ColQ in fast- and slow-twitch muscle fibers.
    Ting AK; Siow NL; Kong LW; Tsim KW
    Chem Biol Interact; 2005 Dec; 157-158():63-70. PubMed ID: 16256971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular regulation of exercised-induced muscle fibre hypertrophy in the common carp: expression of MyoD, PCNA and components of the calcineurin-signalling pathway.
    Martin CI; Johnston IA
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Nov; 142(3):324-34. PubMed ID: 16185906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching.
    McCullagh KJ; Calabria E; Pallafacchina G; Ciciliot S; Serrano AL; Argentini C; Kalhovde JM; Lømo T; Schiaffino S
    Proc Natl Acad Sci U S A; 2004 Jul; 101(29):10590-5. PubMed ID: 15247427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles.
    Bozzo C; Spolaore B; Toniolo L; Stevens L; Bastide B; Cieniewski-Bernard C; Fontana A; Mounier Y; Reggiani C
    FEBS J; 2005 Nov; 272(22):5771-85. PubMed ID: 16279942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.