These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 17473317)

  • 1. Dynamical systems for discovering protein complexes and functional modules from biological networks.
    Li W; Liu Y; Huang HC; Peng Y; Lin Y; Ng WK; Ong KL
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(2):233-50. PubMed ID: 17473317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient algorithm for detecting frequent subgraphs in biological networks.
    Koyutürk M; Grama A; Szpankowski W
    Bioinformatics; 2004 Aug; 20 Suppl 1():i200-7. PubMed ID: 15262800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovering protein complexes in dense reliable neighborhoods of protein interaction networks.
    Li XL; Foo CS; Ng SK
    Comput Syst Bioinformatics Conf; 2007; 6():157-68. PubMed ID: 17951821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovering distinct functional modules of specific cancer types using protein-protein interaction networks.
    Shen R; Wang X; Guda C
    Biomed Res Int; 2015; 2015():146365. PubMed ID: 26495282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifying the DPClus algorithm for identifying protein complexes based on new topological structures.
    Li M; Chen JE; Wang JX; Hu B; Chen G
    BMC Bioinformatics; 2008 Sep; 9():398. PubMed ID: 18816408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. k-Partite cliques of protein interactions: A novel subgraph topology for functional coherence analysis on PPI networks.
    Liu Q; Chen YP; Li J
    J Theor Biol; 2014 Jan; 340():146-54. PubMed ID: 24056214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient detection of network motifs.
    Wernicke S
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(4):347-59. PubMed ID: 17085844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data mining and predictive modeling of biomolecular network from biomedical literature databases.
    Hu X; Wu DD
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(2):251-63. PubMed ID: 17473318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated analysis of multiple data sources reveals modular structure of biological networks.
    Lu H; Shi B; Wu G; Zhang Y; Zhu X; Zhang Z; Liu C; Zhao Y; Wu T; Wang J; Chen R
    Biochem Biophys Res Commun; 2006 Jun; 345(1):302-9. PubMed ID: 16690033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying similar functional modules by a new hybrid spectral clustering method.
    Madani S; Faez K; Aminghafari M
    IET Syst Biol; 2012 Oct; 6(5):175-86. PubMed ID: 23101872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Faspad: fast signaling pathway detection.
    Hüffner F; Wernicke S; Zichner T
    Bioinformatics; 2007 Jul; 23(13):1708-9. PubMed ID: 17463016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting functional modules in the yeast protein-protein interaction network.
    Chen J; Yuan B
    Bioinformatics; 2006 Sep; 22(18):2283-90. PubMed ID: 16837529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fitting a geometric graph to a protein-protein interaction network.
    Higham DJ; Rasajski M; Przulj N
    Bioinformatics; 2008 Apr; 24(8):1093-9. PubMed ID: 18344248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Variable Ordering in Subgraph Isomorphism Algorithms.
    Bonnici V; Giugno R
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(1):193-203. PubMed ID: 26761859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of graph colouring to biological networks.
    Khor S
    IET Syst Biol; 2010 May; 4(3):185-92. PubMed ID: 20499999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motif search in graphs: application to metabolic networks.
    Lacroix V; Fernandes CG; Sagot MF
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(4):360-8. PubMed ID: 17085845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Module Analysis for Gene Coexpression Networks with Network Integration.
    Zhang S; Zhao H; Ng MK
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(5):1146-60. PubMed ID: 26451826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of genomic data for inferring protein complexes from global protein-protein interaction networks.
    Zheng H; Wang H; Glass DH
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):5-16. PubMed ID: 18270078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An algorithm for finding functional modules and protein complexes in protein-protein interaction networks.
    Cui G; Chen Y; Huang DS; Han K
    J Biomed Biotechnol; 2008; 2008():860270. PubMed ID: 18385821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B; Guan J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):616-27. PubMed ID: 26356332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.