These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 17473339)
1. Skin and cutaneous melanocytic lesion simulation in biomedical optics with multilayered phantoms. Urso P; Lualdi M; Colombo A; Carrara M; Tomatis S; Marchesini R Phys Med Biol; 2007 May; 52(10):N229-39. PubMed ID: 17473339 [TBL] [Abstract][Full Text] [Related]
2. Monte Carlo simulation of cutaneous reflectance and fluorescence measurements--the effect of melanin contents and localization. Chen R; Huang Z; Lui H; Hamzavi I; McLean DI; Xie S; Zeng H J Photochem Photobiol B; 2007 Mar; 86(3):219-26. PubMed ID: 17157523 [TBL] [Abstract][Full Text] [Related]
3. A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine. Lualdi M; Colombo A; Farina B; Tomatis S; Marchesini R Lasers Surg Med; 2001; 28(3):237-43. PubMed ID: 11295758 [TBL] [Abstract][Full Text] [Related]
4. Skin color correction for tissue spectroscopy: demonstration of a novel approach with tissue-mimicking phantoms. Soyemi OO; Landry MR; Yang Y; Idwasi PO; Soller BR Appl Spectrosc; 2005 Feb; 59(2):237-44. PubMed ID: 15720765 [TBL] [Abstract][Full Text] [Related]
5. A wearable diffuse reflectance sensor for continuous monitoring of cutaneous blood content. Zakharov P; Talary MS; Caduff A Phys Med Biol; 2009 Sep; 54(17):5301-20. PubMed ID: 19687533 [TBL] [Abstract][Full Text] [Related]
6. Transscleral visible/near-infrared spectroscopy for quantitative assessment of melanin in a uveal melanoma phantom of ex vivo porcine eyes. Krohn J; Xu CT; Svenmarker P; Khoptyar D; Andersson-Engels S Exp Eye Res; 2010 Feb; 90(2):330-6. PubMed ID: 19941854 [TBL] [Abstract][Full Text] [Related]
7. Optical properties of human melanocytic nevi in vivo. Zonios G; Dimou A Photochem Photobiol; 2009; 85(1):298-303. PubMed ID: 18764890 [TBL] [Abstract][Full Text] [Related]
8. Application of voxel phantoms and Monte Carlo method to whole-body counter calibration. Kinase S; Takagi S; Noguchi H; Saito K Radiat Prot Dosimetry; 2007; 125(1-4):189-93. PubMed ID: 17522042 [TBL] [Abstract][Full Text] [Related]
9. Monte Carlo simulation of near infrared autofluorescence measurements of in vivo skin. Wang S; Zhao J; Lui H; He Q; Zeng H J Photochem Photobiol B; 2011 Dec; 105(3):183-9. PubMed ID: 21945055 [TBL] [Abstract][Full Text] [Related]
10. Noninvasive spectral imaging of skin chromophores based on multiple regression analysis aided by Monte Carlo simulation. Nishidate I; Wiswadarma A; Hase Y; Tanaka N; Maeda T; Niizeki K; Aizu Y Opt Lett; 2011 Aug; 36(16):3239-41. PubMed ID: 21847220 [TBL] [Abstract][Full Text] [Related]
11. Transillumination imaging for blood oxygen saturation estimation of skin lesions. D'Alessandro B; Dhawan AP IEEE Trans Biomed Eng; 2012 Sep; 59(9):2660-7. PubMed ID: 22835531 [TBL] [Abstract][Full Text] [Related]
12. Preliminary results on the use of a noninvasive instrument for the evaluation of the depth of pigmented skin lesions: numerical simulations and experimental measurements. Mazzoli A; Munaretto R; Scalise L Lasers Med Sci; 2010 May; 25(3):403-10. PubMed ID: 19763669 [TBL] [Abstract][Full Text] [Related]
13. Reflectance spectra of pigmented and nonpigmented skin in the UV spectral region. Nielsen KP; Lu Z; Juzenas P; Stamnes JJ; Stamnes K; Moan J Photochem Photobiol; 2004; 80(3):450-5. PubMed ID: 15623329 [TBL] [Abstract][Full Text] [Related]
14. The relationship of surface reflectance measurements to optical properties of layered biological media. Cui WJ; Ostrander LE IEEE Trans Biomed Eng; 1992 Feb; 39(2):194-201. PubMed ID: 1612623 [TBL] [Abstract][Full Text] [Related]
15. Experimental and numerical study of the colour appearance of tattoo models. Shimada M; Hata J; Yamada Y; Itoh M; Uchida A; Yatagai T Med Biol Eng Comput; 2002 Mar; 40(2):218-24. PubMed ID: 12043804 [TBL] [Abstract][Full Text] [Related]
16. Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation. O'Doherty J; Henricson J; Anderson C; Leahy MJ; Nilsson GE; Sjöberg F Skin Res Technol; 2007 Nov; 13(4):472-84. PubMed ID: 17908201 [TBL] [Abstract][Full Text] [Related]
17. Monte Carlo comparison of the St Petersburg phantom with a BOMAB phantom in the HML's whole-body counter. Kramer GH; Capello K; Sung J Radiat Prot Dosimetry; 2008; 128(2):245-50. PubMed ID: 17562658 [TBL] [Abstract][Full Text] [Related]
18. Monte Carlo simulation of an anthropometric phantom used for calibrating in vivo K-XRF spectroscopy measurements of stable lead in bone. Lodwick CJ; Spitz HB Health Phys; 2008 Dec; 95(6):744-53. PubMed ID: 19001901 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the St. Petersburg phantom with a BOMAB phantom in the ORTEC StandFast whole body counter: a Monte Carlo simulation. Kramer GH; Capello K; Sung J Health Phys; 2008 May; 94(5 Suppl 2):S78-82. PubMed ID: 18403961 [TBL] [Abstract][Full Text] [Related]
20. Optical devices used for image analysis of pigmented skin lesions: a proposal for quality assurance protocol using tissue-like phantoms. Lualdi M; Colombo A; Carrara M; Scienza L; Tomatis S; Marchesini R Phys Med Biol; 2006 Dec; 51(23):N429-40. PubMed ID: 17110761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]