BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17473433)

  • 1. Isolation and characterization of a human intestinal bacterium, Eubacterium sp. ARC-2, capable of demethylating arctigenin, in the essential metabolic process to enterolactone.
    Jin JS; Zhao YF; Nakamura N; Akao T; Kakiuchi N; Hattori M
    Biol Pharm Bull; 2007 May; 30(5):904-11. PubMed ID: 17473433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective dehydroxylation of enterodiol and enterolactone precursors by human intestinal bacteria.
    Jin JS; Zhao YF; Nakamura N; Akao T; Kakiuchi N; Min BS; Hattori M
    Biol Pharm Bull; 2007 Nov; 30(11):2113-9. PubMed ID: 17978485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further studies on a human intestinal bacterium Ruminococcus sp. END-1 for transformation of plant lignans to mammalian lignans.
    Jin JS; Hattori M
    J Agric Food Chem; 2009 Aug; 57(16):7537-42. PubMed ID: 19630415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone.
    Wang LQ; Meselhy MR; Li Y; Qin GW; Hattori M
    Chem Pharm Bull (Tokyo); 2000 Nov; 48(11):1606-10. PubMed ID: 11086885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human intestinal bacterium, strain END-2 is responsible for demethylation as well as lactonization during plant lignan metabolism.
    Jin JS; Hattori M
    Biol Pharm Bull; 2010; 33(8):1443-7. PubMed ID: 20686246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside.
    Clavel T; Henderson G; Engst W; Doré J; Blaut M
    FEMS Microbiol Ecol; 2006 Mar; 55(3):471-8. PubMed ID: 16466386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective oxidation of enterodiol to enterolactone by human intestinal bacteria.
    Jin JS; Kakiuchi N; Hattori M
    Biol Pharm Bull; 2007 Nov; 30(11):2204-6. PubMed ID: 17978502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol.
    Xie LH; Akao T; Hamasaki K; Deyama T; Hattori M
    Chem Pharm Bull (Tokyo); 2003 May; 51(5):508-15. PubMed ID: 12736449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.
    Jin JS; Lee JH; Hattori M
    Molecules; 2013 Jan; 18(1):1122-7. PubMed ID: 23325100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol.
    Heinonen S; Nurmi T; Liukkonen K; Poutanen K; Wähälä K; Deyama T; Nishibe S; Adlercreutz H
    J Agric Food Chem; 2001 Jul; 49(7):3178-86. PubMed ID: 11453749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and Characterization of a Human Intestinal Bacterium Eggerthella sp. AUH-JLD49s for the Conversion of (-)-3'-Desmethylarctigenin.
    Wang Y; Yu F; Liu MY; Zhao YK; Wang DM; Hao QH; Wang XL
    J Agric Food Chem; 2017 May; 65(20):4051-4056. PubMed ID: 28493688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on human intestinal bacterium Blautia sp. AUH-JLD56 for the conversion of arctigenin to (-)-3'-desmethylarctigenin.
    Liu MY; Li M; Wang XL; Liu P; Hao QH; Yu XM
    J Agric Food Chem; 2013 Dec; 61(49):12060-5. PubMed ID: 24236649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous determination of arctiin and its metabolites in rat urine and feces by HPLC.
    Wang W; Pan Q; Han XY; Wang J; Tan RQ; He F; Dou DQ; Kang TG
    Fitoterapia; 2013 Apr; 86():6-12. PubMed ID: 23380537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of arctiin to estrogenic and antiestrogenic substances by human intestinal bacteria.
    Xie LH; Ahn EM; Akao T; Abdel-Hafez AA; Nakamura N; Hattori M
    Chem Pharm Bull (Tokyo); 2003 Apr; 51(4):378-84. PubMed ID: 12672988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial conversion of secoisolariciresinol and anhydrosecoisolariciresinol.
    Struijs K; Vincken JP; Gruppen H
    J Appl Microbiol; 2009 Jul; 107(1):308-17. PubMed ID: 19302311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of novel metabolites of flaxseed lignans in vitro and in vivo.
    Quartieri A; García-Villalba R; Amaretti A; Raimondi S; Leonardi A; Rossi M; Tomàs-Barberàn F
    Mol Nutr Food Res; 2016 Jul; 60(7):1590-601. PubMed ID: 26873880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural transformation of lignan compounds in rat gastrointestinal tract.
    Nose M; Fujimoto T; Takeda T; Nishibe S; Ogihara Y
    Planta Med; 1992 Dec; 58(6):520-3. PubMed ID: 1336605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incomplete metabolism of phytoestrogens by gut microbiota from children under the age of three.
    Gaya P; Sánchez-Jiménez A; Peirotén Á; Medina M; Landete JM
    Int J Food Sci Nutr; 2018 May; 69(3):334-343. PubMed ID: 28728453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside.
    Clavel T; Lippman R; Gavini F; Doré J; Blaut M
    Syst Appl Microbiol; 2007 Jan; 30(1):16-26. PubMed ID: 17196483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of the (+)-Pinoresinol-Mineralizing Pseudomonas sp. Strain SG-MS2 and Elucidation of Its Catabolic Pathway.
    Shettigar M; Balotra S; Cahill D; Warden AC; Lacey MJ; Kohler HE; Rentsch D; Oakeshott JG; Pandey G
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.