These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 1747368)

  • 1. Large-scale stable opening of supercoiled DNA in response to temperature and supercoiling in (A + T)-rich regions that promote low-salt cruciform extrusion.
    Bowater R; Aboul-ela F; Lilley DM
    Biochemistry; 1991 Dec; 30(49):11495-506. PubMed ID: 1747368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale opening of A + T rich regions within supercoiled DNA molecules is suppressed by salt.
    Bowater RP; Aboul-ela F; Lilley DM
    Nucleic Acids Res; 1994 Jun; 22(11):2042-50. PubMed ID: 8029010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localized chemical hyperreactivity in supercoiled DNA: evidence for base unpairing in sequences that induce low-salt cruciform extrusion.
    Furlong JC; Sullivan KM; Murchie AI; Gough GW; Lilley DM
    Biochemistry; 1989 Mar; 28(5):2009-17. PubMed ID: 2541769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic adduct formation at structural perturbations in supercoiled DNA molecules.
    Lilley DM
    IARC Sci Publ; 1986; (70):83-99. PubMed ID: 3793194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-state conformational equilibrium for alternating (A-T)n sequences in negatively supercoiled DNA.
    McClellan JA; Lilley DM
    J Mol Biol; 1987 Oct; 197(4):707-21. PubMed ID: 3430599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural alteration in alternating adenine-thymine sequences in positively supercoiled DNA.
    McClellan JA; Lilley DM
    J Mol Biol; 1991 May; 219(2):145-9. PubMed ID: 2038050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The physical chemistry of cruciform structures in supercoiled DNA molecules.
    Lilley DM; Gough GW; Hallam LR; Sullivan KM
    Biochimie; 1985; 67(7-8):697-706. PubMed ID: 3002491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competing B-Z and helix-coil conformational transitions in supercoiled plasmid DNA.
    Aboul-ela F; Bowater RP; Lilley DM
    J Biol Chem; 1992 Jan; 267(3):1776-85. PubMed ID: 1730717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helix stability and the mechanism of cruciform extrusion in supercoiled DNA molecules.
    Sullivan KM; Lilley DM
    Nucleic Acids Res; 1988 Feb; 16(3):1079-93. PubMed ID: 3344201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The supercoil-stabilised cruciform of ColE1 is hyper-reactive to osmium tetroxide.
    Lilley DM; Palecek E
    EMBO J; 1984 May; 3(5):1187-92. PubMed ID: 6329743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of cruciform formation in supercoiled DNA: initial opening of central basepairs in salt-dependent extrusion.
    Murchie AI; Lilley DM
    Nucleic Acids Res; 1987 Dec; 15(23):9641-54. PubMed ID: 3697079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-range structural effects in supercoiled DNA: statistical thermodynamics reveals a correlation between calculated cooperative melting and contextual influence on cruciform extrusion.
    Schaeffer F; Yeramian E; Lilley DM
    Biopolymers; 1989 Aug; 28(8):1449-73. PubMed ID: 2752100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The kinetic properties of cruciform extrusion are determined by DNA base-sequence.
    Lilley DM
    Nucleic Acids Res; 1985 Mar; 13(5):1443-65. PubMed ID: 4000940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile cruciform formation by an (A-T)34 sequence from a Xenopus globin gene.
    Greaves DR; Patient RK; Lilley DM
    J Mol Biol; 1985 Oct; 185(3):461-78. PubMed ID: 2997451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flanking AT-rich sequences may lower the activation energy of cruciform extrusion in supercoiled DNA.
    Wang Y; Sauerbier W
    Biochem Biophys Res Commun; 1989 Jan; 158(2):423-31. PubMed ID: 2537072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of magnesium on cruciform extrusion in supercoiled DNA.
    Vologodskaia MY; Vologodskii AV
    J Mol Biol; 1999 Jun; 289(4):851-9. PubMed ID: 10369766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow cruciform transitions in palindromic DNA.
    Gellert M; O'Dea MH; Mizuuchi K
    Proc Natl Acad Sci U S A; 1983 Sep; 80(18):5545-9. PubMed ID: 6577442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long range structural communication between sequences in supercoiled DNA. Sequence dependence of contextual influence on cruciform extrusion mechanism.
    Sullivan KM; Murchie AI; Lilley DM
    J Biol Chem; 1988 Sep; 263(26):13074-82. PubMed ID: 2843507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of base composition at the center of inverted repeated DNA sequences on cruciform transitions in DNA.
    Zheng GX; Sinden RR
    J Biol Chem; 1988 Apr; 263(11):5356-61. PubMed ID: 3356690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osmium tetroxide probing of local DNA structure in linear and supercoiled plasmids containing curvature-inducing sequences.
    Palecek E; Makaturová-Rasovská E; Diekmann S
    Gen Physiol Biophys; 1988 Aug; 7(4):379-93. PubMed ID: 3181745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.