These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17474039)

  • 1. Optimized versus corrected peak power during friction-braked cycle ergometry in males and females.
    James DV; Wood DM; Maberly TC; De Ste Croix M
    J Sports Sci; 2007 Jun; 25(8):859-67. PubMed ID: 17474039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of inertia correction and resistive load on fatigue during repeated sprints on a friction-loaded cycle ergometer.
    Bogdanis G; Papaspyrou A; Lakomy H; Nevill M
    J Sports Sci; 2008 Nov; 26(13):1437-45. PubMed ID: 18923956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized and corrected peak power output during friction-braked cycle ergometry.
    Winter EM; Brown D; Roberts NK; Brookes FB; Swaine IL
    J Sports Sci; 1996 Dec; 14(6):513-21. PubMed ID: 8981290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of starting cadence on sprint-performance indices in friction-loaded cycle ergometry.
    Wright RL; Wood DM; James DV
    Int J Sports Physiol Perform; 2007 Mar; 2(1):22-33. PubMed ID: 19255452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of previous dynamic arm exercise on power output during repeated maximal sprint cycling.
    Bogdanis GC; Nevill ME; Lakomy HK
    J Sports Sci; 1994 Aug; 12(4):363-70. PubMed ID: 7932946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma volume response to 30-s cycle ergometry: influence on lipid and lipoprotein.
    Retallick CJ; Baker JS; Williams SR; Whitcombe D; Davies B
    Med Sci Sports Exerc; 2007 Sep; 39(9):1579-86. PubMed ID: 17805091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal loads for a 30-s maximal power cycle ergometer test using a stationary start.
    Vargas NT; Robergs RA; Klopp DM
    Eur J Appl Physiol; 2015 May; 115(5):1087-94. PubMed ID: 25549787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of cycle ergometer type and sex on assessment of 30-second anaerobic capacity and power.
    Leicht AS; Sealey RM; Sinclair WH
    Int J Sports Med; 2011 Sep; 32(9):688-92. PubMed ID: 21618158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Load Determination for the 3-Minute All-Out Exercise Test for Cycle Ergometry.
    Dicks ND; Jamnick NA; Murray SR; Pettitt RW
    Int J Sports Physiol Perform; 2016 Mar; 11(2):197-203. PubMed ID: 26182439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of crank rate strategy on peak aerobic power and peak physiological responses during arm crank ergometry.
    Smith PM; Doherty M; Price MJ
    J Sports Sci; 2007 Apr; 25(6):711-8. PubMed ID: 17454538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertial effects on mechanically braked Wingate power calculations.
    Reiser RF; Broker JP; Peterson ML
    Med Sci Sports Exerc; 2000 Sep; 32(9):1660-4. PubMed ID: 10994921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanically braked Wingate powers: agreement between SRM, corrected and conventional methods of measurement.
    Balmer J; Bird S; Davison RC; Doherty M; Smith P
    J Sports Sci; 2004 Jul; 22(7):661-7. PubMed ID: 15370497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of resistive load on power output and fatigue during intermittent sprint cycling exercise in children.
    Bogdanis GC; Papaspyrou A; Theos A; Maridaki M
    Eur J Appl Physiol; 2007 Oct; 101(3):313-20. PubMed ID: 17602236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Open-ended time durations for stationary start intense cycle ergometer exercise testing.
    Klopp DM; Vargas NT; Robergs RA
    Appl Physiol Nutr Metab; 2013 May; 38(5):574-80. PubMed ID: 23668767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the force-velocity test to determine the optimal braking force for a sprint exercise on a friction-loaded cycle ergometer.
    Linossier MT; Dormois D; Fouquet R; Geyssant A; Denis C
    Eur J Appl Physiol Occup Physiol; 1996; 74(5):420-7. PubMed ID: 8954289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of passive versus active recovery on power output over six repeated wingate sprints.
    Lopez EI; Smoliga JM; Zavorsky GS
    Res Q Exerc Sport; 2014 Dec; 85(4):519-26. PubMed ID: 25412134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of prior heavy exercise on the parameters of the power-duration curve for cycle ergometry.
    Miura A; Shiragiku C; Hirotoshi Y; Kitano A; Endo MY; Barstow TJ; Morton RH; Fukuba Y
    Appl Physiol Nutr Metab; 2009 Dec; 34(6):1001-7. PubMed ID: 20029507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-intensity intermittent cycle ergometer exercise: effect of recovery duration and resistive force selection on performance.
    Baker JS; Van Praagh E; Gelsei M; Thomas M; Davies B
    Res Sports Med; 2007; 15(2):77-92. PubMed ID: 17578748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of inertia on performance and fatigue pattern during repeated cycle sprints in males and females.
    Falgairette G; Billaut F; Giacomoni M; Ramdani S; Boyadjian A
    Int J Sports Med; 2004 Apr; 25(3):235-40. PubMed ID: 15088250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.