These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 17474047)

  • 61. Calibration of the biotrainer pro activity monitor in children.
    Welk GJ; Eisenmann JC; Schaben J; Trost SG; Dale D
    Pediatr Exerc Sci; 2007 May; 19(2):145-58. PubMed ID: 17603138
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Validation of a questionnaire to assess physical activity of children ages 4-8 years.
    Harro M
    Res Q Exerc Sport; 1997 Dec; 68(4):259-68. PubMed ID: 9421838
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Using hidden markov models to improve quantifying physical activity in accelerometer data - a simulation study.
    Witowski V; Foraita R; Pitsiladis Y; Pigeot I; Wirsik N
    PLoS One; 2014; 9(12):e114089. PubMed ID: 25464514
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Individual information-centered approach for handling physical activity missing data.
    Kang M; Rowe DA; Barreira TV; Robinson TS; Mahar MT
    Res Q Exerc Sport; 2009 Jun; 80(2):131-7. PubMed ID: 19650377
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The inconsistency of "optimal" cutpoints obtained using two criteria based on the receiver operating characteristic curve.
    Perkins NJ; Schisterman EF
    Am J Epidemiol; 2006 Apr; 163(7):670-5. PubMed ID: 16410346
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Intensity and duration of activity bouts decreases in healthy children between 7 and 13 years of age: a new, higher resolution method to analyze StepWatch Activity Monitor data.
    Tulchin-Francis K; Stevens W; Jeans KA
    Physiol Meas; 2014 Nov; 35(11):2239-54. PubMed ID: 25340461
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Interpreting Patient-reported Outcome Scores for Clinical Research and Practice: Definition, Determination, and Application of Cutpoints.
    Shi Q; Mendoza TR; Cleeland CS
    Med Care; 2019 May; 57 Suppl 5 Suppl 1():S8-S12. PubMed ID: 30985590
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Proposal for a new protein therapeutic immunogenicity titer assay cutpoint.
    Wakshull E; Hendricks R; Amaya C; Coleman D
    Bioanalysis; 2011 Dec; 3(23):2627-36. PubMed ID: 22136051
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Influence of Accelerometer Calibration Approach on Moderate-Vigorous Physical Activity Estimates for Adults-Corrigendum.
    Matthews CE; Keadle SK; Berrigan D; Lyden K; Troiano RP
    Med Sci Sports Exerc; 2021 Sep; 53(9):2018. PubMed ID: 34398068
    [No Abstract]   [Full Text] [Related]  

  • 70. Comment on "Search for a substance-dependent force with a new differential accelerometer".
    Maris HJ
    Phys Rev Lett; 1988 Mar; 60(10):964. PubMed ID: 10037902
    [No Abstract]   [Full Text] [Related]  

  • 71. Search for a substance-dependent force with a new differential accelerometer.
    Thieberger P
    Phys Rev Lett; 1987 Mar; 58(11):1066-1069. PubMed ID: 10034330
    [No Abstract]   [Full Text] [Related]  

  • 72. Calibration of an Accelerometer Activity Index among Older Women and Its Association with Cardiometabolic Risk Factors.
    Wang G; Wu S; Evenson KR; Kang I; LaMonte MJ; Bellettiere J; Lee IM; Howard AG; LaCroix AZ; Di C
    J Meas Phys Behav; 2022 Sep; 5(3):145-155. PubMed ID: 36504675
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evaluation of Wrist Accelerometer Cut-Points for Classifying Physical Activity Intensity in Youth.
    Trost SG; Brookes DSK; Ahmadi MN
    Front Digit Health; 2022; 4():884307. PubMed ID: 35585912
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Device-based measurement of physical activity in pre-schoolers: Comparison of machine learning and cut point methods.
    Ahmadi MN; Trost SG
    PLoS One; 2022; 17(4):e0266970. PubMed ID: 35417492
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Assessment of Physical Activity in Adults Using Wrist Accelerometers.
    Liu F; Wanigatunga AA; Schrack JA
    Epidemiol Rev; 2022 Jan; 43(1):65-93. PubMed ID: 34215874
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Calibration and Cross-Validation of Accelerometer Cut-Points to Classify Sedentary Time and Physical Activity from Hip and Non-Dominant and Dominant Wrists in Older Adults.
    Migueles JH; Cadenas-Sanchez C; Alcantara JMA; Leal-Martín J; Mañas A; Ara I; Glynn NW; Shiroma EJ
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34064790
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Machine Learning Models for Classifying Physical Activity in Free-Living Preschool Children.
    Ahmadi MN; Pavey TG; Trost SG
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764316
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Calibration and Cross-Validation of Accelerometery for Estimating Movement Skills in Children Aged 8-12 Years.
    Duncan MJ; Dobell A; Noon M; Clark CCT; Roscoe CMP; Faghy MA; Stodden D; Sacko R; Eyre ELJ
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32414192
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Defining accelerometer cut-points for different intensity levels in motor-complete spinal cord injury.
    Holmlund T; Ekblom-Bak E; Franzén E; Hultling C; Wahman K
    Spinal Cord; 2020 Jan; 58(1):116-124. PubMed ID: 31243318
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effects of Frequency Filtering on Intensity and Noise in Accelerometer-Based Physical Activity Measurements.
    Fridolfsson J; Börjesson M; Buck C; Ekblom Ö; Ekblom-Bak E; Hunsberger M; Lissner L; Arvidsson D
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31083538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.