BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 17474078)

  • 1. Preparation and degradation behavior of polyanhydrides nanoparticles.
    Lee WC; Chu IM
    J Biomed Mater Res B Appl Biomater; 2008 Jan; 84(1):138-46. PubMed ID: 17474078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of polyanhydride for local BCNU delivery carriers.
    Kim MS; Seo KS; Seong HS; Cho SH; Lee HB; Hong KD; Kim SK; Khang G
    Biomed Mater Eng; 2005; 15(3):229-38. PubMed ID: 15912003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated High-Throughput Synthesis of Protein-Loaded Polyanhydride Nanoparticle Libraries.
    Goodman JT; Mullis AS; Dunshee L; Mitra A; Narasimhan B
    ACS Comb Sci; 2018 May; 20(5):298-307. PubMed ID: 29617113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of protein-loaded polyanhydride microspheres.
    Sun L; Zhou S; Wang W; Su Q; Li X; Weng J
    J Mater Sci Mater Med; 2009 Oct; 20(10):2035-42. PubMed ID: 19424777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Synthesis and Screening of Rapidly Degrading Polyanhydride Nanoparticles.
    Mullis AS; Jacobson SJ; Narasimhan B
    ACS Comb Sci; 2020 Apr; 22(4):172-183. PubMed ID: 32125826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and erosion properties of PEG-containing polyanhydrides.
    Hou S; McCauley LK; Ma PX
    Macromol Biosci; 2007 May; 7(5):620-8. PubMed ID: 17457940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of polymer chemistry and fabrication method on protein release and stability from polyanhydride microspheres.
    Lopac SK; Torres MP; Wilson-Welder JH; Wannemuehler MJ; Narasimhan B
    J Biomed Mater Res B Appl Biomater; 2009 Nov; 91(2):938-947. PubMed ID: 19642209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable polyanhydride synthesized from sebacic acid and ricinoleic acid.
    Haim-Zada M; Basu A; Hagigit T; Schlinger R; Grishko M; Kraminsky A; Hanuka E; Domb AJ
    J Control Release; 2017 Jul; 257():156-162. PubMed ID: 27126904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer chemistry influences monocytic uptake of polyanhydride nanospheres.
    Ulery BD; Phanse Y; Sinha A; Wannemuehler MJ; Narasimhan B; Bellaire BH
    Pharm Res; 2009 Mar; 26(3):683-90. PubMed ID: 18987960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of biodegradable electrospun polyanhydride nano/microfibers.
    Su Q; Zhao A; Peng H; Zhou S
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6369-75. PubMed ID: 21137732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular Internalization Mechanisms of Polyanhydride Particles: Implications for Rational Design of Drug Delivery Vehicles.
    Phanse Y; Lueth P; Ramer-Tait AE; Carrillo-Conde BR; Wannemuehler MJ; Narasihan B; Bellaire BH
    J Biomed Nanotechnol; 2016 Jul; 12(7):1544-52. PubMed ID: 29337493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of polyanhydride microspheres for basal insulin delivery: Effect of copolymer composition and zinc salt on encapsulation, in vitro release, stability, in vivo absorption and bioactivity in diabetic rats.
    Manoharan C; Singh J
    J Pharm Sci; 2009 Nov; 98(11):4237-50. PubMed ID: 19472196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High throughput cell-based screening of biodegradable polyanhydride libraries.
    Adler AF; Petersen LK; Wilson JH; Torres MP; Thorstenson JB; Gardner SW; Mallapragada SK; Wannemuehler MJ; Narasimhan B
    Comb Chem High Throughput Screen; 2009 Aug; 12(7):634-45. PubMed ID: 19531023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel copolyanhydrides combining strong inherent fluorescence and a wide range of biodegradability: synthesis, characterization and in vitro degradation.
    Jiang H; Chen D; Zhao P; Li Y; Zhu K
    Macromol Biosci; 2005 Aug; 5(8):753-9. PubMed ID: 16096992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled delivery systems for proteins using polyanhydride microspheres.
    Tabata Y; Gutta S; Langer R
    Pharm Res; 1993 Apr; 10(4):487-96. PubMed ID: 8483830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyanhydride microspheres that display near-constant release of water-soluble model drug compounds.
    Tabata Y; Langer R
    Pharm Res; 1993 Mar; 10(3):391-9. PubMed ID: 8464812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of polyanhydride chemistry in particle-based cancer vaccines on the magnitude of the anti-tumor immune response.
    Wafa EI; Geary SM; Goodman JT; Narasimhan B; Salem AK
    Acta Biomater; 2017 Mar; 50():417-427. PubMed ID: 28063991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic relationships between polymer microstructure and drug release kinetics in bioerodible polyanhydrides.
    Shen E; Kipper MJ; Dziadul B; Lim MK; Narasimhan B
    J Control Release; 2002 Jul; 82(1):115-25. PubMed ID: 12106982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of porous poly(anhydride-co-imide) microspheres and implications for controlled macromolecule delivery.
    Hanes J; Chiba M; Langer R
    Biomaterials; 1998; 19(1-3):163-72. PubMed ID: 9678864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention of structure, antigenicity, and biological function of pneumococcal surface protein A (PspA) released from polyanhydride nanoparticles.
    Haughney SL; Petersen LK; Schoofs AD; Ramer-Tait AE; King JD; Briles DE; Wannemuehler MJ; Narasimhan B
    Acta Biomater; 2013 Sep; 9(9):8262-71. PubMed ID: 23774257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.