BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 1747428)

  • 1. [Kinetics of NADH oxidation of NAD+ reduction by mitochondrial complex I].
    Avraam R; Kotliar AB
    Biokhimiia; 1991 Sep; 56(9):1676-87. PubMed ID: 1747428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Inhibition of NADH-dehydrogenase by low concentrations of NAD+].
    Avraam R; Kotliar AB
    Biokhimiia; 1991 Dec; 56(12):2253-60. PubMed ID: 1807407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Activation of complex I in the reaction of NADH oxidation and delta mu H+-dependent NAD+ reduction by succinate].
    Kotliar AB
    Biokhimiia; 1990 Feb; 55(2):195-200. PubMed ID: 2111181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Hysteresis behavior of complex I in delta mu H+-dependent reduction of NAD+ succinate].
    Kotliar AB; Vinogradov AD
    Biokhimiia; 1989 Jan; 54(1):9-16. PubMed ID: 2497801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences between the reactivities of two pyridine nucleotides in the rapid reduction process and the reoxidation process of adrenodoxin reductase.
    Sugiyama T; Miura R; Yamano T
    J Biochem; 1979 Jul; 86(1):213-23. PubMed ID: 39065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
    Nivière V; Vanoni MA; Zanetti G; Fontecave M
    Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of mitochondrial NADPH : NAD transhydrogenase with electron transport in adult Hymenolepis diminuta.
    Fioravanti CF
    J Parasitol; 1981 Dec; 67(6):823-31. PubMed ID: 7328455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilized mitochondrial electron transport particle for NADH determination.
    Aizawa M; Wada M; Kato S; Suzuki S
    Biotechnol Bioeng; 1980 Sep; 22(9):1769-83. PubMed ID: 7407338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I).
    Zu Y; Shannon RJ; Hirst J
    J Am Chem Soc; 2003 May; 125(20):6020-1. PubMed ID: 12785808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles.
    Fato R; Estornell E; Di Bernardo S; Pallotti F; Parenti Castelli G; Lenaz G
    Biochemistry; 1996 Feb; 35(8):2705-16. PubMed ID: 8611577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse electron transport effects on NADH formation and metmyoglobin reduction.
    Belskie KM; Van Buiten CB; Ramanathan R; Mancini RA
    Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether.
    Suzuki H; Wakai M; Ozawa T
    Biochem Int; 1986 Aug; 13(2):351-7. PubMed ID: 3094534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mitochondrial transhydrogenase: general principles of functioning].
    Kozlov IA
    Biokhimiia; 1979 Oct; 44(10):1731-7. PubMed ID: 41597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of mitochondrial NADH:ubiquinone oxidoreductase by ethoxyformic anhydride.
    Vik SB; Hatefi Y
    Biochem Int; 1984 Nov; 9(5):547-55. PubMed ID: 6441575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The use of certain new O-benzoquinone derivatives as acceptor substrates in enzymatic oxidation of NADH].
    Volod'ko LV; Matusevich PA; Min'ko AA; Titovets EP
    Biokhimiia; 1977 Feb; 42(2):205-10. PubMed ID: 192345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level.
    Pecci L; Montefoschi G; Fontana M; Cavallini D
    Biochem Biophys Res Commun; 1994 Mar; 199(2):755-60. PubMed ID: 8135820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex.
    Lee HJ; Basran J; Scrutton NS
    Biochemistry; 1998 Nov; 37(44):15513-22. PubMed ID: 9799514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex.
    Reipa V; Holden MJ; Vilker VL
    Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.