These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17474527)

  • 1. On using an approximate noncentral t-distribution in determining a one-side upper limit for future sample relative reproducibility standard deviations.
    McClure FD; Lee JK
    J AOAC Int; 2007; 90(2):575-81. PubMed ID: 17474527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On using a normal approximation for the noncentral t-distribution in determining upper limits for future sample relative repeatability and reproducibility standard deviations.
    McClure FD; Lee JK
    J AOAC Int; 2009; 92(1):320-8. PubMed ID: 19396976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining a one-tailed upper limit for future sample relative reproducibility standard deviations.
    McClure FD; Lee JK
    J AOAC Int; 2006; 89(3):797-803. PubMed ID: 16795922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On determining a 1-tailed upper limit for future sample HorRat values.
    McClure FD; Lee JK
    J AOAC Int; 2006; 89(6):1650-63. PubMed ID: 17233107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of a two-tailed 100(1-alpha)% upper limit on the relative error in the laboratory-to-laboratory standard deviation obtained from an interlaboratory study.
    McClure FD; Lee JK
    J AOAC Int; 2009; 92(5):1593-601. PubMed ID: 19916398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact one-tailed 100p% upper limits for future sample repeatability relative standard deviations obtained in single- and multilaboratory repeatability studies.
    McClure FD; Lee JK
    J AOAC Int; 2007; 90(6):1701-5. PubMed ID: 18196644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sample sizes needed for specified margins of relative error in the estimates of the repeatability and reproducibility standard deviations.
    McClure FD; Lee JK
    J AOAC Int; 2005; 88(5):1503-10. PubMed ID: 16386001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How accurate is the Pearson r-from-Z approximation? A Monte Carlo simulation study.
    Hittner JB; May K
    J Gen Psychol; 2012; 139(2):68-77. PubMed ID: 24836910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy in parameter estimation for targeted effects in structural equation modeling: sample size planning for narrow confidence intervals.
    Lai K; Kelley K
    Psychol Methods; 2011 Jun; 16(2):127-48. PubMed ID: 21417531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simulation study comparing two approximations for a quasi t-quantile, used in repeated measures ANOVA.
    Silverberg AR
    Stat Med; 1994 Aug; 13(16):1657-63. PubMed ID: 7973241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On estimating P values by the Monte Carlo method.
    Ewens WJ
    Am J Hum Genet; 2003 Feb; 72(2):496-8. PubMed ID: 12596794
    [No Abstract]   [Full Text] [Related]  

  • 12. On power and sample size calculations for likelihood ratio tests in generalized linear models.
    Shieh G
    Biometrics; 2000 Dec; 56(4):1192-6. PubMed ID: 11129478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A note on calculation of empirical P values from Monte Carlo procedure.
    North BV; Curtis D; Sham PC
    Am J Hum Genet; 2003 Feb; 72(2):498-9. PubMed ID: 12596795
    [No Abstract]   [Full Text] [Related]  

  • 14. Simulation-based P values: response to North et al.
    Broman KW; Caffo BS
    Am J Hum Genet; 2003 Feb; 72(2):496. PubMed ID: 12596792
    [No Abstract]   [Full Text] [Related]  

  • 15. A modified large-sample approach to approximate interval estimation for a particular intraclass correlation coefficient.
    Cappelleri JC; Ting N
    Stat Med; 2003 Jun; 22(11):1861-77. PubMed ID: 12754721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A power approximation for the Kenward and Roger Wald test in the linear mixed model.
    Kreidler SM; Ringham BM; Muller KE; Glueck DH
    PLoS One; 2021; 16(7):e0254811. PubMed ID: 34288958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy when inferential statistics are used as measurement tools.
    Bradley MT; Brand A
    BMC Res Notes; 2016 Apr; 9():241. PubMed ID: 27112752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the equivalence test for analytical method transfers: testing precision using the United States Pharmacopoeia concept (1010).
    Schepers U; Wätzig H
    J Pharm Biomed Anal; 2006 Apr; 41(1):290-2. PubMed ID: 16338114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical inference for the within-device precision of quantitative measurements in assay validation.
    Liu JP; Lu LT; Liao CT
    J Biopharm Stat; 2009 Sep; 19(5):763-78. PubMed ID: 20183442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical inference involving binomial and negative binomial parameters.
    García-Pérez MA; Núñez-Antón V
    Span J Psychol; 2009 May; 12(1):288-307. PubMed ID: 19476241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.