BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 17474708)

  • 1. Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face?
    Leroueil PR; Hong S; Mecke A; Baker JR; Orr BG; Banaszak Holl MM
    Acc Chem Res; 2007 May; 40(5):335-42. PubMed ID: 17474708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability.
    Hong S; Leroueil PR; Janus EK; Peters JL; Kober MM; Islam MT; Orr BG; Baker JR; Banaszak Holl MM
    Bioconjug Chem; 2006; 17(3):728-34. PubMed ID: 16704211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic and natural polycationic polymer nanoparticles interact selectively with fluid-phase domains of DMPC lipid bilayers.
    Mecke A; Lee DK; Ramamoorthy A; Orr BG; Holl MM
    Langmuir; 2005 Sep; 21(19):8588-90. PubMed ID: 16142931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport.
    Hong S; Bielinska AU; Mecke A; Keszler B; Beals JL; Shi X; Balogh L; Orr BG; Baker JR; Banaszak Holl MM
    Bioconjug Chem; 2004; 15(4):774-82. PubMed ID: 15264864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and disruption of lipid bilayers by nanoscale protein aggregates.
    Hirano A; Yoshikawa H; Matsushita S; Yamada Y; Shiraki K
    Langmuir; 2012 Feb; 28(8):3887-95. PubMed ID: 22276744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay between lipid lateral diffusion, dye concentration and membrane permeability unveiled by a combined spectroscopic and computational study of a model lipid bilayer.
    Jan Akhunzada M; D'Autilia F; Chandramouli B; Bhattacharjee N; Catte A; Di Rienzo R; Cardarelli F; Brancato G
    Sci Rep; 2019 Feb; 9(1):1508. PubMed ID: 30728410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cell-penetrating peptide TAT(48-60) induces a non-lamellar phase in DMPC membranes.
    Afonin S; Frey A; Bayerl S; Fischer D; Wadhwani P; Weinkauf S; Ulrich AS
    Chemphyschem; 2006 Oct; 7(10):2134-42. PubMed ID: 16986196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale depth resolution in scanning near-field infrared microscopy.
    Wollny G; Bründermann E; Arsov Z; Quaroni L; Havenith M
    Opt Express; 2008 May; 16(10):7453-9. PubMed ID: 18545450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical method to quantify nanoparticle interaction with lipid bilayers.
    Carney RP; Astier Y; Carney TM; Voïtchovsky K; Jacob Silva PH; Stellacci F
    ACS Nano; 2013 Feb; 7(2):932-42. PubMed ID: 23267695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of saponin 1688 with phase separated lipid bilayers.
    Chen M; Balhara V; Jaimes Castillo AM; Balsevich J; Johnston LJ
    Biochim Biophys Acta Biomembr; 2017 Jul; 1859(7):1263-1272. PubMed ID: 28389202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning-aperture trapping and manipulation of single charged nanoparticles.
    Tae Kim J; Spindler S; Sandoghdar V
    Nat Commun; 2014 Mar; 5():3380. PubMed ID: 24614532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface charge dependent nanoparticle disruption and deposition of lipid bilayer assemblies.
    Xiao X; Montaño GA; Edwards TL; Allen A; Achyuthan KE; Polsky R; Wheeler DR; Brozik SM
    Langmuir; 2012 Dec; 28(50):17396-403. PubMed ID: 23163515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale mechanical probing of supported lipid bilayers with atomic force microscopy.
    Das C; Sheikh KH; Olmsted PD; Connell SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041920. PubMed ID: 21230326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of free hydroxylated and methyl-branched fatty acids on the organization of lipid membranes.
    Jenske R; Lindström F; Gröbner G; Vetter W
    Chem Phys Lipids; 2008 Jul; 154(1):26-32. PubMed ID: 18407834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcin J25 membrane interaction: selectivity toward gel phase.
    Dupuy F; Morero R
    Biochim Biophys Acta; 2011 Jun; 1808(6):1764-71. PubMed ID: 21376012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monovalent and Oriented Labeling of Gold Nanoprobes for the High-Resolution Tracking of a Single-Membrane Molecule.
    Liao YH; Lin CH; Cheng CY; Wong WC; Juo JY; Hsieh CL
    ACS Nano; 2019 Oct; 13(10):10918-10928. PubMed ID: 31259529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect formation of lytic peptides in lipid membranes and their influence on the thermodynamic properties of the pore environment.
    Oliynyk V; Kaatze U; Heimburg T
    Biochim Biophys Acta; 2007 Feb; 1768(2):236-45. PubMed ID: 17141732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes.
    Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M
    Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biophysical characterization of nanoparticle-endothelial model cell membrane interactions.
    Peetla C; Labhasetwar V
    Mol Pharm; 2008; 5(3):418-29. PubMed ID: 18271547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale imaging of domains in supported lipid membranes.
    Johnston LJ
    Langmuir; 2007 May; 23(11):5886-95. PubMed ID: 17428076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.