These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 17474766)

  • 41. Free energy dependence of the diffusion-limited quenching rate constants in photoinduced electron transfer processes.
    Avila V; Previtali CM; Chesta CA
    Photochem Photobiol Sci; 2008 Jan; 7(1):104-8. PubMed ID: 18167603
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 8-thiocyanatoflavins as active-site probes for flavoproteins.
    Macheroux P; Massey V
    Biochemistry; 1991 Jan; 30(2):456-64. PubMed ID: 1670991
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reversibility of electron transfer in tryptophan-tyrosine peptide in acidic aqueous solution studied by time-resolved CIDNP.
    Morozova OB; Yurkovskaya AV; Sagdeev RZ
    J Phys Chem B; 2005 Mar; 109(8):3668-75. PubMed ID: 16851405
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calculating chemically accurate redox potentials for engineered flavoproteins from classical molecular dynamics free energy simulations.
    Sattelle BM; Sutcliffe MJ
    J Phys Chem A; 2008 Dec; 112(50):13053-7. PubMed ID: 18828581
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Distinguishing between Dexter and rapid sequential electron transfer in covalently linked donor-acceptor assemblies.
    Soler M; McCusker JK
    J Am Chem Soc; 2008 Apr; 130(14):4708-24. PubMed ID: 18341336
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Alternative Electron-Transfer Channels Ensure Ultrafast Deactivation of Light-Induced Excited States in Riboflavin Binding Protein.
    Zanetti-Polzi L; Aschi M; Amadei A; Daidone I
    J Phys Chem Lett; 2017 Jul; 8(14):3321-3327. PubMed ID: 28665138
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Closure of a tyrosine/tryptophan aromatic gate leads to a compact fold in apo flavodoxin.
    Genzor CG; Perales-Alcón A; Sancho J; Romero A
    Nat Struct Biol; 1996 Apr; 3(4):329-32. PubMed ID: 8599758
    [No Abstract]   [Full Text] [Related]  

  • 48. Photoinduced electron transfer and geminate recombination in liquids on short time scales: Experiments and theory.
    Goun A; Glusac K; Fayer MD
    J Chem Phys; 2006 Feb; 124(8):084504. PubMed ID: 16512726
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced intersystem crossing via a high energy charge transfer state in a perylenediimide-perylenemonoimide dyad.
    Veldman D; Chopin SM; Meskers SC; Janssen RA
    J Phys Chem A; 2008 Sep; 112(37):8617-32. PubMed ID: 18729442
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-dimensional representations of photo-induced electron transfer rates in pyrene-(CH2)n-N,N'-dimethylaniline systems obtained by three electron transfer theories.
    Rujkorakarn R; Tanaka F
    J Mol Graph Model; 2009 Jan; 27(5):571-7. PubMed ID: 18990594
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Persistent electron-transfer state of a pi-complex of acridinium ion inserted between porphyrin rings of cofacial bisporphyrins.
    Tanaka M; Ohkubo K; Gros CP; Guilard R; Fukuzumi S
    J Am Chem Soc; 2006 Nov; 128(45):14625-33. PubMed ID: 17090048
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural and mechanistic aspects of flavoproteins: photosynthetic electron transfer from photosystem I to NADP+.
    Medina M
    FEBS J; 2009 Aug; 276(15):3942-58. PubMed ID: 19583765
    [TBL] [Abstract][Full Text] [Related]  

  • 53. One-dimensional energy/electron transfer through a helical channel.
    Kim OK; Je J; Melinger JS
    J Am Chem Soc; 2006 Apr; 128(14):4532-3. PubMed ID: 16594664
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrafast Dynamics of Nonequilibrium Short-Range Electron Transfer in Semiquinone Flavodoxin.
    Yang J; Zhang Y; Lu Y; Wang L; Lu F; Zhong D
    J Phys Chem Lett; 2022 Apr; 13(14):3202-3208. PubMed ID: 35377652
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular dynamics simulations of oxidized and reduced Clostridium beijerinckii flavodoxin.
    Leenders R; van Gunsteren WF; Berendsen HJ; Visser AJ
    Biophys J; 1994 Mar; 66(3 Pt 1):634-45. PubMed ID: 8011895
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the photophysics of artificial blue-light photoreceptors: an ab initio study on a flavin-based dye dyad at the level of coupled-cluster response theory.
    Sadeghian K; Schütz M
    J Am Chem Soc; 2007 Apr; 129(13):4068-74. PubMed ID: 17352477
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetics and mechanism of bimolecular electron transfer reaction in quinone-amine systems in micellar solution.
    Kumbhakar M; Nath S; Mukherjee T; Pal H
    J Chem Phys; 2005 Feb; 122(8):84512. PubMed ID: 15836068
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of tryptophanyl and tyrosyl residues of flavoproteins in binding with flavin coenzymes. X-ray structural studies using model complexes.
    Inoue M; Shibata M; Kondo Y; Ishida T
    Biochemistry; 1981 May; 20(10):2936-45. PubMed ID: 7248260
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Electron transfer between globular proteins. Dependence of the rate of transfer on distance].
    Lakhno VD; Chuev GN; Ustinin MN; Komarov VM
    Biofizika; 1998; 43(6):953-7. PubMed ID: 10079913
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photoinduced bimolecular electron transfer kinetics in small unilamellar vesicles.
    Choudhury SD; Kumbhakar M; Nath S; Pal H
    J Chem Phys; 2007 Nov; 127(19):194901. PubMed ID: 18035902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.