BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 17474784)

  • 1. Hybrid confocal Raman fluorescence microscopy on single cells using semiconductor quantum dots.
    van Manen HJ; Otto C
    Nano Lett; 2007 Jun; 7(6):1631-6. PubMed ID: 17474784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Dots for Improved Single-Molecule Localization Microscopy.
    Urban JM; Chiang W; Hammond JW; Cogan NMB; Litzburg A; Burke R; Stern HA; Gelbard HA; Nilsson BL; Krauss TD
    J Phys Chem B; 2021 Mar; 125(10):2566-2576. PubMed ID: 33683893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells.
    Uzunbajakava N; Lenferink A; Kraan Y; Volokhina E; Vrensen G; Greve J; Otto C
    Biophys J; 2003 Jun; 84(6):3968-81. PubMed ID: 12770902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of targeted monovalent quantum dots by steric exclusion.
    Farlow J; Seo D; Broaders KE; Taylor MJ; Gartner ZJ; Jun YW
    Nat Methods; 2013 Dec; 10(12):1203-5. PubMed ID: 24122039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in fluorescence imaging with quantum dot bio-probes.
    Pinaud F; Michalet X; Bentolila LA; Tsay JM; Doose S; Li JJ; Iyer G; Weiss S
    Biomaterials; 2006 Mar; 27(9):1679-87. PubMed ID: 16318871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance Fluorescence of an InGaAs Quantum Dot in a Planar Cavity Using Orthogonal Excitation and Detection.
    Chen D; Lander GR; Flagg EB
    J Vis Exp; 2017 Oct; (128):. PubMed ID: 29053692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Sparse Sampling for Confocal Raman Microscopy.
    Zhang S; Song Z; Godaliyadda GMDP; Ye DH; Chowdhury AU; Sengupta A; Buzzard GT; Bouman CA; Simpson GJ
    Anal Chem; 2018 Apr; 90(7):4461-4469. PubMed ID: 29521493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring uptake dynamics of multiple identifiable carbon nanotube species via high-speed confocal Raman imaging of live cells.
    Kang JW; Nguyen FT; Lue N; Dasari RR; Heller DA
    Nano Lett; 2012 Dec; 12(12):6170-4. PubMed ID: 23151070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expansion microscopy with conventional antibodies and fluorescent proteins.
    Chozinski TJ; Halpern AR; Okawa H; Kim HJ; Tremel GJ; Wong RO; Vaughan JC
    Nat Methods; 2016 Jun; 13(6):485-8. PubMed ID: 27064647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling spatial distributions of molecules in multicomponent organic crystals, with quantitative mapping by confocal Raman microspectrometry.
    Palmer BA; Le Comte A; Harris KD; Guillaume F
    J Am Chem Soc; 2013 Oct; 135(39):14512-5. PubMed ID: 24004273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability.
    Squirrell JM; Wokosin DL; White JG; Bavister BD
    Nat Biotechnol; 1999 Aug; 17(8):763-7. PubMed ID: 10429240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solubilization of quantum dots with a recombinant peptide from Escherichia coli.
    Iyer G; Pinaud F; Tsay J; Weiss S
    Small; 2007 May; 3(5):793-8. PubMed ID: 17393550
    [No Abstract]   [Full Text] [Related]  

  • 13. Combining Qdot Nanotechnology and DNA Nanotechnology for Sensitive Single-Cell Imaging.
    Zhou W; Han Y; Beliveau BJ; Gao X
    Adv Mater; 2020 Jul; 32(30):e1908410. PubMed ID: 32542832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal illumination limits in 3D Raman microscopy: A comparison of different sample illumination strategies to obtain maximum imaging speed.
    Hauswald W; Förster R; Popp J; Heintzmann R
    PLoS One; 2019; 14(8):e0220824. PubMed ID: 31408502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell photonic nanocavity probes.
    Shambat G; Kothapalli SR; Provine J; Sarmiento T; Harris J; Gambhir SS; Vučković J
    Nano Lett; 2013 Nov; 13(11):4999-5005. PubMed ID: 23387382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-photon 3D FIONA of individual quantum dots in an aqueous environment.
    Zhang R; Rothenberg E; Fruhwirth G; Simonson PD; Ye F; Golding I; Ng T; Lopes W; Selvin PR
    Nano Lett; 2011 Oct; 11(10):4074-8. PubMed ID: 21882883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating expression profiles of single living cells from Raman microscopy.
    Nat Biotechnol; 2024 Jan; ():. PubMed ID: 38200121
    [No Abstract]   [Full Text] [Related]  

  • 18. Opportunities in optical and electrical single-cell technologies to study microbial ecosystems.
    Mermans F; Mattelin V; Van den Eeckhoudt R; García-Timermans C; Van Landuyt J; Guo Y; Taurino I; Tavernier F; Kraft M; Khan H; Boon N
    Front Microbiol; 2023; 14():1233705. PubMed ID: 37692384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional Quantitative Intracellular Visualization of Graphene Oxide Nanoparticles by Tomographic Flow Cytometry.
    Pirone D; Mugnano M; Memmolo P; Merola F; Lama GC; Castaldo R; Miccio L; Bianco V; Grilli S; Ferraro P
    Nano Lett; 2021 Jul; 21(14):5958-5966. PubMed ID: 34232045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bis(phenylethynyl)arene Linkers in Tetracationic Bis-triarylborane Chromophores Control Fluorimetric and Raman Sensing of Various DNAs and RNAs.
    Ferger M; Ban Ž; Krošl I; Tomić S; Dietrich L; Lorenzen S; Rauch F; Sieh D; Friedrich A; Griesbeck S; Kenđel A; Miljanić S; Piantanida I; Marder TB
    Chemistry; 2021 Mar; 27(16):5142-5159. PubMed ID: 33411942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.