These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 17475217)

  • 1. Simple quantitative detection of mitochondrial superoxide production in live cells.
    Mukhopadhyay P; Rajesh M; Yoshihiro K; Haskó G; Pacher P
    Biochem Biophys Res Commun; 2007 Jun; 358(1):203-8. PubMed ID: 17475217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy.
    Mukhopadhyay P; Rajesh M; Haskó G; Hawkins BJ; Madesh M; Pacher P
    Nat Protoc; 2007; 2(9):2295-301. PubMed ID: 17853886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells.
    Carter WO; Narayanan PK; Robinson JP
    J Leukoc Biol; 1994 Feb; 55(2):253-8. PubMed ID: 8301222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simplified hydroethidine method for fast and accurate detection of superoxide production in isolated mitochondria.
    Back P; Matthijssens F; Vanfleteren JR; Braeckman BP
    Anal Biochem; 2012 Apr; 423(1):147-51. PubMed ID: 22310498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The selective detection of mitochondrial superoxide by live cell imaging.
    Robinson KM; Janes MS; Beckman JS
    Nat Protoc; 2008; 3(6):941-7. PubMed ID: 18536642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells.
    Budd SL; Castilho RF; Nicholls DG
    FEBS Lett; 1997 Sep; 415(1):21-4. PubMed ID: 9326361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase.
    Raha S; McEachern GE; Myint AT; Robinson BH
    Free Radic Biol Med; 2000 Jul; 29(2):170-80. PubMed ID: 10980405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Generation of superoxide radicals by the mitochondrial respiratory chain of isolated cardiomyocytes].
    Kashkarov KP; Vasil'eva EV; Ruuge EK
    Biokhimiia; 1994 Jun; 59(6):813-8. PubMed ID: 8075245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal ganglion cell axotomy induces an increase in intracellular superoxide anion.
    Lieven CJ; Hoegger MJ; Schlieve CR; Levin LA
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1477-85. PubMed ID: 16565382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of NAD(P)H oxidase in the regulation of cardiac L-type Ca2+ channel function during acute hypoxia.
    Hool LC; Di Maria CA; Viola HM; Arthur PG
    Cardiovasc Res; 2005 Sep; 67(4):624-35. PubMed ID: 15913584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective fluorescent imaging of superoxide in vivo using ethidium-based probes.
    Robinson KM; Janes MS; Pehar M; Monette JS; Ross MF; Hagen TM; Murphy MP; Beckman JS
    Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15038-43. PubMed ID: 17015830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphinate-based mitochondria-targeted fluorescent probe for imaging and detection of endogenous superoxide in live cells and in vivo.
    Huang S; Zhang X; Liu Y; Gui J; Wang R; Han L; Jia H; Du L
    Talanta; 2019 May; 197():239-248. PubMed ID: 30771930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth.
    Zielonka J; Kalyanaraman B
    Free Radic Biol Med; 2010 Apr; 48(8):983-1001. PubMed ID: 20116425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Mitochondrial Mass, Damage, and Reactive Oxygen Species by Flow Cytometry.
    Puleston D
    Cold Spring Harb Protoc; 2015 Sep; 2015(9):pdb.prot086298. PubMed ID: 26330624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiotoxicity of calmidazolium chloride is attributed to calcium aggravation, oxidative and nitrosative stress, and apoptosis.
    Kumar S; Kain V; Sitasawad SL
    Free Radic Biol Med; 2009 Sep; 47(6):699-709. PubMed ID: 19497364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interleukin-10 protects nitric oxide-dependent relaxation during diabetes: role of superoxide.
    Gunnett CA; Heistad DD; Faraci FM
    Diabetes; 2002 Jun; 51(6):1931-7. PubMed ID: 12031983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-acetylcysteine prevents glucose/glucose oxidase-induced oxidative stress, mitochondrial damage and apoptosis in H9c2 cells.
    Kumar S; Sitasawad SL
    Life Sci; 2009 Mar; 84(11-12):328-36. PubMed ID: 19159629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical cytometry quantitates superoxide levels in the mitochondrial matrix of single myoblasts.
    Xu X; Arriaga EA
    Anal Chem; 2010 Aug; 82(16):6745-50. PubMed ID: 20704362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low micromolar concentrations of the superoxide probe MitoSOX uncouple neural mitochondria and inhibit complex IV.
    Roelofs BA; Ge SX; Studlack PE; Polster BM
    Free Radic Biol Med; 2015 Sep; 86():250-8. PubMed ID: 26057935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct monitoring of mitochondrial calcium levels in cultured cardiac myocytes using a novel fluorescent indicator protein, GCaMP2-mt.
    Iguchi M; Kato M; Nakai J; Takeda T; Matsumoto-Ida M; Kita T; Kimura T; Akao M
    Int J Cardiol; 2012 Jul; 158(2):225-34. PubMed ID: 21295866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.