These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 17475392)
1. Effects of soil data resolution on SWAT model stream flow and water quality predictions. Geza M; McCray JE J Environ Manage; 2008 Aug; 88(3):393-406. PubMed ID: 17475392 [TBL] [Abstract][Full Text] [Related]
2. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model. Larose M; Heathman GC; Norton LD; Engel B J Environ Qual; 2007; 36(2):521-31. PubMed ID: 17332256 [TBL] [Abstract][Full Text] [Related]
3. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs. Teshager AD; Gassman PW; Secchi S; Schoof JT; Misgna G Environ Manage; 2016 Apr; 57(4):894-911. PubMed ID: 26616430 [TBL] [Abstract][Full Text] [Related]
4. Modeling sediment and nitrogen export from a rural watershed in eastern Canada using the soil and water assessment tool. Nafees Ahmad HM; Sinclair A; Jamieson R; Madani A; Hebb D; Havard P; Yiridoe EK J Environ Qual; 2011; 40(4):1182-94. PubMed ID: 21712588 [TBL] [Abstract][Full Text] [Related]
5. Multi-scale geospatial agroecosystem modeling: a case study on the influence of soil data resolution on carbon budget estimates. Zhang X; Sahajpal R; Manowitz DH; Zhao K; Leduc SD; Xu M; Xiong W; Zhang A; Izaurralde RC; Thomson AM; West TO; Post WM Sci Total Environ; 2014 May; 479-480():138-50. PubMed ID: 24561293 [TBL] [Abstract][Full Text] [Related]
6. Modeling riverine nitrate export from an East-Central Illinois watershed using SWAT. Hu X; McIsaac GF; David MB; Louwers CA J Environ Qual; 2007; 36(4):996-1005. PubMed ID: 17526878 [TBL] [Abstract][Full Text] [Related]
7. Source specific fecal bacteria modeling using soil and water assessment tool model. Parajuli PB; Mankin KR; Barnes PL Bioresour Technol; 2009 Jan; 100(2):953-63. PubMed ID: 18703332 [TBL] [Abstract][Full Text] [Related]
8. A distributed non-point source pollution model: calibration and validation in the Yellow River Basin. Hao FH; Zhang XS; Yang ZF J Environ Sci (China); 2004; 16(4):646-50. PubMed ID: 15495973 [TBL] [Abstract][Full Text] [Related]
9. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California. Luo Y; Zhang X; Liu X; Ficklin D; Zhang M Environ Pollut; 2008 Dec; 156(3):1171-81. PubMed ID: 18457909 [TBL] [Abstract][Full Text] [Related]
10. Effects of calibration on L-THIA GIS runoff and pollutant estimation. Lim KJ; Engel BA; Tang Z; Muthukrishnan S; Choi J; Kim K J Environ Manage; 2006 Jan; 78(1):35-43. PubMed ID: 16112801 [TBL] [Abstract][Full Text] [Related]
11. Assessment of a turfgrass sod best management practice on water quality in a suburban watershed. Richards CE; Munster CL; Vietor DM; Arnold JG; White R J Environ Manage; 2008 Jan; 86(1):229-45. PubMed ID: 17298864 [TBL] [Abstract][Full Text] [Related]
12. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins. Vigiak O; Malagó A; Bouraoui F; Vanmaercke M; Poesen J Sci Total Environ; 2015 Dec; 538():855-75. PubMed ID: 26356993 [TBL] [Abstract][Full Text] [Related]
13. Model AVSWAT apropos of simulating non-point source pollution in Taihu lake basin. Zhang QL; Chen YX; Jilani G; Shamsi IH; Yu QG J Hazard Mater; 2010 Feb; 174(1-3):824-30. PubMed ID: 19853378 [TBL] [Abstract][Full Text] [Related]
14. Watershed-level comparison of predictability and sensitivity of two phosphorus models. Sen S; Srivastava P; Vadas PA; Kalin L J Environ Qual; 2012; 41(5):1642-52. PubMed ID: 23099956 [TBL] [Abstract][Full Text] [Related]
15. Sensitivity-Based Calibration of the Soil and Water Assessment Tool for Hydrologic Cycle Simulation in the Cong Watershed, Vietnam. Anh NV; Fukuda S; Hiramatsu K; Harada M Water Environ Res; 2015 Aug; 87(8):735-50. PubMed ID: 26237690 [TBL] [Abstract][Full Text] [Related]
16. Linking land-use type and stream water quality using spatial data of fecal indicator bacteria and heavy metals in the Yeongsan river basin. Kang JH; Lee SW; Cho KH; Ki SJ; Cha SM; Kim JH Water Res; 2010 Jul; 44(14):4143-57. PubMed ID: 20599099 [TBL] [Abstract][Full Text] [Related]
17. Quantitative assessment of agricultural runoff and soil erosion using mathematical modeling: applications in the Mediterranean region. Arhonditsis G; Giourga C; Loumou A; Koulouri M Environ Manage; 2002 Sep; 30(3):434-53. PubMed ID: 12148076 [TBL] [Abstract][Full Text] [Related]
18. Evaluating the impact of field-scale management strategies on sediment transport to the watershed outlet. Sommerlot AR; Pouyan Nejadhashemi A; Woznicki SA; Prohaska MD J Environ Manage; 2013 Oct; 128():735-48. PubMed ID: 23851319 [TBL] [Abstract][Full Text] [Related]
19. Modeling phosphorus in the Lake Allatoona watershed using SWAT: I. Developing phosphorus parameter values. Radcliffe DE; Lin Z; Risse LM; Romeis JJ; Jackson CR J Environ Qual; 2009; 38(1):111-20. PubMed ID: 19141800 [TBL] [Abstract][Full Text] [Related]
20. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale. Wang X; Shang S; Qu Z; Liu T; Melesse AM; Yang W J Environ Manage; 2010 Jul; 91(7):1511-25. PubMed ID: 20236754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]