These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 17475511)

  • 61. Enhanced Motor Imagery Training Using a Hybrid BCI With Feedback.
    Yu T; Xiao J; Wang F; Zhang R; Gu Z; Cichocki A; Li Y
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1706-17. PubMed ID: 25680205
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Robust artifactual independent component classification for BCI practitioners.
    Winkler I; Brandl S; Horn F; Waldburger E; Allefeld C; Tangermann M
    J Neural Eng; 2014 Jun; 11(3):035013. PubMed ID: 24836294
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential.
    Li Y; Long J; Yu T; Yu Z; Wang C; Zhang H; Guan C
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2495-505. PubMed ID: 20615806
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Wadsworth Center brain-computer interface (BCI) research and development program.
    Wolpaw JR; McFarland DJ; Vaughan TM; Schalk G
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):204-7. PubMed ID: 12899275
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Toward a hybrid brain-computer interface based on imagined movement and visual attention.
    Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G
    J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The effects of self-movement, observation, and imagination on mu rhythms and readiness potentials (RP's): toward a brain-computer interface (BCI).
    Pineda JA; Allison BZ; Vankov A
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):219-22. PubMed ID: 10896193
    [TBL] [Abstract][Full Text] [Related]  

  • 68. EEG oscillatory patterns and classification of sequential compound limb motor imagery.
    Yi W; Qiu S; Wang K; Qi H; He F; Zhou P; Zhang L; Ming D
    J Neuroeng Rehabil; 2016 Jan; 13():11. PubMed ID: 26822435
    [TBL] [Abstract][Full Text] [Related]  

  • 69. MEG based classification of wrist movement.
    Montazeri N; Shamsollahi MB; Hajipour S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():986-9. PubMed ID: 19964746
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Identification of the phase code in an EEG during gripping-force tasks: a possible alternative approach to the development of the brain-computer interfaces.
    Logar V; Skrjanc I; Belic A; Brezan S; Koritnik B; Zidar J
    Artif Intell Med; 2008 Sep; 44(1):41-9. PubMed ID: 18657956
    [TBL] [Abstract][Full Text] [Related]  

  • 71. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A Comparative Study on the Detection of Covert Attention in Event-Related EEG and MEG Signals to Control a BCI.
    Reichert C; Dürschmid S; Heinze HJ; Hinrichs H
    Front Neurosci; 2017; 11():575. PubMed ID: 29085279
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Change in brain activity through virtual reality-based brain-machine communication in a chronic tetraplegic subject with muscular dystrophy.
    Hashimoto Y; Ushiba J; Kimura A; Liu M; Tomita Y
    BMC Neurosci; 2010 Sep; 11():117. PubMed ID: 20846418
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sensorimotor modulation assessment and brain-computer interface training in disorders of consciousness.
    Coyle D; Stow J; McCreadie K; McElligott J; Carroll Á
    Arch Phys Med Rehabil; 2015 Mar; 96(3 Suppl):S62-70. PubMed ID: 25721549
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke.
    Buch E; Weber C; Cohen LG; Braun C; Dimyan MA; Ard T; Mellinger J; Caria A; Soekadar S; Fourkas A; Birbaumer N
    Stroke; 2008 Mar; 39(3):910-7. PubMed ID: 18258825
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The impact of loss of control on movement BCIs.
    Reuderink B; Poel M; Nijholt A
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):628-37. PubMed ID: 21984517
    [TBL] [Abstract][Full Text] [Related]  

  • 77. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.
    Müller-Putz GR; Schwarz A; Pereira J; Ofner P
    Prog Brain Res; 2016; 228():39-70. PubMed ID: 27590965
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair.
    Long J; Li Y; Wang H; Yu T; Pan J; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):720-9. PubMed ID: 22692936
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Single trial classification of motor imagination using 6 dry EEG electrodes.
    Popescu F; Fazli S; Badower Y; Blankertz B; Müller KR
    PLoS One; 2007 Jul; 2(7):e637. PubMed ID: 17653264
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ipsilateral EEG mu rhythm reflects the excitability of uncrossed pathways projecting to shoulder muscles.
    Hasegawa K; Kasuga S; Takasaki K; Mizuno K; Liu M; Ushiba J
    J Neuroeng Rehabil; 2017 Aug; 14(1):85. PubMed ID: 28841920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.