BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 17475520)

  • 1. Possible role of flexible red blood cell membrane nanodomains in the growth and stability of membrane nanotubes.
    Iglic A; Lokar M; Babnik B; Slivnik T; Veranic P; Hägerstrand H; Kralj-Iglic V
    Blood Cells Mol Dis; 2007; 39(1):14-23. PubMed ID: 17475520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin is not required for nanotubular protrusions of primary astrocytes grown on metal nano-lawn.
    Gimsa U; Iglic A; Fiedler S; Zwanzig M; Kralj-Iglic V; Jonas L; Gimsa J
    Mol Membr Biol; 2007; 24(3):243-55. PubMed ID: 17520481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphiphile-induced tubular budding of the bilayer membrane.
    Kralj-Iglic V; Hägerstrand H; Veranic P; Jezernik K; Babnik B; Gauger DR; Iglic A
    Eur Biophys J; 2005 Nov; 34(8):1066-70. PubMed ID: 15997398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Role of Curved Membrane Nanodomains, and Passive and Active Skeleton Forces in the Determination of Cell Shape and Membrane Budding.
    Mesarec L; Drab M; Penič S; Kralj-Iglič V; Iglič A
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33652934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes.
    Lokar M; Kabaso D; Resnik N; Sepčić K; Kralj-Iglič V; Veranič P; Zorec R; Iglič A
    Int J Nanomedicine; 2012; 7():1891-902. PubMed ID: 22605937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo-electron microscopy of coagulation Factor VIII bound to lipid nanotubes.
    Parmenter CD; Cane MC; Zhang R; Stoilova-McPhie S
    Biochem Biophys Res Commun; 2008 Feb; 366(2):288-93. PubMed ID: 18039465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid nanotube formation from streptavidin-membrane binding.
    Liu H; Bachand GD; Kim H; Hayden CC; Abate EA; Sasaki DY
    Langmuir; 2008 Apr; 24(8):3686-9. PubMed ID: 18336048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curvature-induced accumulation of anisotropic membrane components and raft formation in cylindrical membrane protrusions.
    Iglic A; Hägerstrand H; Veranic P; Plemenitas A; Kralj-Iglic V
    J Theor Biol; 2006 Jun; 240(3):368-73. PubMed ID: 16277995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational behavior of polymers adsorbed on nanotubes.
    Gurevitch I; Srebnik S
    J Chem Phys; 2008 Apr; 128(14):144901. PubMed ID: 18412476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic processes in endocytic transformation of a raft-exhibiting giant liposome.
    Hamada T; Miura Y; Ishii K; Araki S; Yoshikawa K; Vestergaard M; Takagi M
    J Phys Chem B; 2007 Sep; 111(37):10853-7. PubMed ID: 17718558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunneling nanotubes: a new route for the exchange of components between animal cells.
    Gerdes HH; Bukoreshtliev NV; Barroso JF
    FEBS Lett; 2007 May; 581(11):2194-201. PubMed ID: 17433307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic studies on structural parameters for nanotubular assembly of hexa-peri-hexabenzocoronenes.
    Jin W; Yamamoto Y; Fukushima T; Ishii N; Kim J; Kato K; Takata M; Aida T
    J Am Chem Soc; 2008 Jul; 130(29):9434-40. PubMed ID: 18576635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile formation of branched titanate nanotubes to grow a three-dimensional nanotubular network directly on a solid substrate.
    Zhang H; Liu P; Wang H; Yu H; Zhang S; Zhu H; Peng F; Zhao H
    Langmuir; 2010 Feb; 26(3):1574-8. PubMed ID: 20039654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of partially hydrolysed alpha-lactalbumin.
    Ipsen R; Otte J
    Biotechnol Adv; 2007; 25(6):602-5. PubMed ID: 17855040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled patterning of aligned self-assembled peptide nanotubes.
    Reches M; Gazit E
    Nat Nanotechnol; 2006 Dec; 1(3):195-200. PubMed ID: 18654186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inception Mechanisms of Tunneling Nanotubes.
    Drab M; Stopar D; Kralj-Iglič V; Iglič A
    Cells; 2019 Jun; 8(6):. PubMed ID: 31234435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic force microscope observation on biomembrane before and after peroxidation.
    Wang JY; Wang LP; Ren QS
    Biophys Chem; 2007 Dec; 131(1-3):105-10. PubMed ID: 17964061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomechanical characterization of polyaniline coated tobacco mosaic virus nanotubes.
    Wang X; Niu Z; Li S; Wang Q; Li X
    J Biomed Mater Res A; 2008 Oct; 87(1):8-14. PubMed ID: 18080295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A freestanding membrane of highly ordered anodic ZrO2 nanotube arrays.
    Shin Y; Lee S
    Nanotechnology; 2009 Mar; 20(10):105301. PubMed ID: 19417516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can membrane nanotubes facilitate communication between immune cells?
    Onfelt B; Davis DM
    Biochem Soc Trans; 2004 Nov; 32(Pt 5):676-8. PubMed ID: 15493985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.