These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 17475520)

  • 1. Possible role of flexible red blood cell membrane nanodomains in the growth and stability of membrane nanotubes.
    Iglic A; Lokar M; Babnik B; Slivnik T; Veranic P; Hägerstrand H; Kralj-Iglic V
    Blood Cells Mol Dis; 2007; 39(1):14-23. PubMed ID: 17475520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin is not required for nanotubular protrusions of primary astrocytes grown on metal nano-lawn.
    Gimsa U; Iglic A; Fiedler S; Zwanzig M; Kralj-Iglic V; Jonas L; Gimsa J
    Mol Membr Biol; 2007; 24(3):243-55. PubMed ID: 17520481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphiphile-induced tubular budding of the bilayer membrane.
    Kralj-Iglic V; Hägerstrand H; Veranic P; Jezernik K; Babnik B; Gauger DR; Iglic A
    Eur Biophys J; 2005 Nov; 34(8):1066-70. PubMed ID: 15997398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Role of Curved Membrane Nanodomains, and Passive and Active Skeleton Forces in the Determination of Cell Shape and Membrane Budding.
    Mesarec L; Drab M; Penič S; Kralj-Iglič V; Iglič A
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33652934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes.
    Lokar M; Kabaso D; Resnik N; Sepčić K; Kralj-Iglič V; Veranič P; Zorec R; Iglič A
    Int J Nanomedicine; 2012; 7():1891-902. PubMed ID: 22605937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo-electron microscopy of coagulation Factor VIII bound to lipid nanotubes.
    Parmenter CD; Cane MC; Zhang R; Stoilova-McPhie S
    Biochem Biophys Res Commun; 2008 Feb; 366(2):288-93. PubMed ID: 18039465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid nanotube formation from streptavidin-membrane binding.
    Liu H; Bachand GD; Kim H; Hayden CC; Abate EA; Sasaki DY
    Langmuir; 2008 Apr; 24(8):3686-9. PubMed ID: 18336048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curvature-induced accumulation of anisotropic membrane components and raft formation in cylindrical membrane protrusions.
    Iglic A; Hägerstrand H; Veranic P; Plemenitas A; Kralj-Iglic V
    J Theor Biol; 2006 Jun; 240(3):368-73. PubMed ID: 16277995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational behavior of polymers adsorbed on nanotubes.
    Gurevitch I; Srebnik S
    J Chem Phys; 2008 Apr; 128(14):144901. PubMed ID: 18412476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic processes in endocytic transformation of a raft-exhibiting giant liposome.
    Hamada T; Miura Y; Ishii K; Araki S; Yoshikawa K; Vestergaard M; Takagi M
    J Phys Chem B; 2007 Sep; 111(37):10853-7. PubMed ID: 17718558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunneling nanotubes: a new route for the exchange of components between animal cells.
    Gerdes HH; Bukoreshtliev NV; Barroso JF
    FEBS Lett; 2007 May; 581(11):2194-201. PubMed ID: 17433307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic studies on structural parameters for nanotubular assembly of hexa-peri-hexabenzocoronenes.
    Jin W; Yamamoto Y; Fukushima T; Ishii N; Kim J; Kato K; Takata M; Aida T
    J Am Chem Soc; 2008 Jul; 130(29):9434-40. PubMed ID: 18576635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile formation of branched titanate nanotubes to grow a three-dimensional nanotubular network directly on a solid substrate.
    Zhang H; Liu P; Wang H; Yu H; Zhang S; Zhu H; Peng F; Zhao H
    Langmuir; 2010 Feb; 26(3):1574-8. PubMed ID: 20039654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of partially hydrolysed alpha-lactalbumin.
    Ipsen R; Otte J
    Biotechnol Adv; 2007; 25(6):602-5. PubMed ID: 17855040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled patterning of aligned self-assembled peptide nanotubes.
    Reches M; Gazit E
    Nat Nanotechnol; 2006 Dec; 1(3):195-200. PubMed ID: 18654186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inception Mechanisms of Tunneling Nanotubes.
    Drab M; Stopar D; Kralj-Iglič V; Iglič A
    Cells; 2019 Jun; 8(6):. PubMed ID: 31234435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic force microscope observation on biomembrane before and after peroxidation.
    Wang JY; Wang LP; Ren QS
    Biophys Chem; 2007 Dec; 131(1-3):105-10. PubMed ID: 17964061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomechanical characterization of polyaniline coated tobacco mosaic virus nanotubes.
    Wang X; Niu Z; Li S; Wang Q; Li X
    J Biomed Mater Res A; 2008 Oct; 87(1):8-14. PubMed ID: 18080295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A freestanding membrane of highly ordered anodic ZrO2 nanotube arrays.
    Shin Y; Lee S
    Nanotechnology; 2009 Mar; 20(10):105301. PubMed ID: 19417516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can membrane nanotubes facilitate communication between immune cells?
    Onfelt B; Davis DM
    Biochem Soc Trans; 2004 Nov; 32(Pt 5):676-8. PubMed ID: 15493985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.