BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17475801)

  • 1. Conversion of functional synapses into silent synapses in the trigeminal brainstem after neonatal peripheral nerve transection.
    Lo FS; Erzurumlu RS
    J Neurosci; 2007 May; 27(18):4929-34. PubMed ID: 17475801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peripheral nerve damage does not alter release properties of developing central trigeminal afferents.
    Lo FS; Erzurumlu RS
    J Neurophysiol; 2011 Apr; 105(4):1681-8. PubMed ID: 21307331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory Activity-Dependent and Sensory Activity-Independent Properties of the Developing Rodent Trigeminal Principal Nucleus.
    Lo FS; Erzurumlu RS
    Dev Neurosci; 2016; 38(3):163-170. PubMed ID: 27287019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological properties and synaptic responses of cells in the trigeminal principal sensory nucleus of postnatal rats.
    Lo FS; Guido W; Erzurumlu RS
    J Neurophysiol; 1999 Nov; 82(5):2765-75. PubMed ID: 10561443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Astrocytes promote peripheral nerve injury-induced reactive synaptogenesis in the neonatal CNS.
    Lo FS; Zhao S; Erzurumlu RS
    J Neurophysiol; 2011 Dec; 106(6):2876-87. PubMed ID: 21900512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neonatal infraorbital nerve crush-induced CNS synaptic plasticity and functional recovery.
    Lo FS; Zhao S; Erzurumlu RS
    J Neurophysiol; 2014 Apr; 111(8):1590-600. PubMed ID: 24478162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-methyl-D-aspartate receptor subunit composition in the rat trigeminal principal nucleus remains constant during postnatal development and following neonatal denervation.
    Lo FS; Zhao S
    Neuroscience; 2011 Mar; 178():240-9. PubMed ID: 21256193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neonatal deafferentation does not alter membrane properties of trigeminal nucleus principalis neurons.
    Lo FS; Erzurumlu RS
    J Neurophysiol; 2001 Mar; 85(3):1088-96. PubMed ID: 11247979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-function relationships in rat brainstem subnucleus interpolaris: V. Functional consequences of neonatal infraorbital nerve section.
    Jacquin MF
    J Comp Neurol; 1989 Apr; 282(1):63-79. PubMed ID: 2708594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Newborn rat brainstem preparation with the trigeminal nerve attached for pain study.
    Hamba M; Onimaru H
    Brain Res Brain Res Protoc; 1998 Sep; 3(1):7-13. PubMed ID: 9767080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function relationships in rat brainstem subnucleus interpolaris. XI. Effects of chronic whisker trimming from birth.
    Jacquin MF; Rhoades RW; Klein BG
    J Comp Neurol; 1995 May; 356(2):200-24. PubMed ID: 7629315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depolarization of trigeminal afferents induced by stimulation of brain-stem and peripheral nerves.
    Baldissera F; Broggi G; Mancia M
    Exp Brain Res; 1967; 4(1):1-17. PubMed ID: 5598816
    [No Abstract]   [Full Text] [Related]  

  • 13. Neonatal sensory nerve injury-induced synaptic plasticity in the trigeminal principal sensory nucleus.
    Lo FS; Erzurumlu RS
    Exp Neurol; 2016 Jan; 275 Pt 2(0 2):245-52. PubMed ID: 25956829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of terminals and synapses in laminae I and II of the rat medullary dorsal horn after infraorbital nerve transection at birth.
    Golden JP; Demaro JA; Robinson PL; Jacquin MF
    J Comp Neurol; 1997 Jul; 383(3):339-48. PubMed ID: 9205045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevention of galanin upregulation following neonatal infraorbital nerve transection or attenuation of axoplasmic transport does not rescue central vibrissae-related patterns in the rat.
    Chiaia NL; Shah A; Crissman RS; Rhoades RW
    Eur J Neurosci; 2001 Jan; 13(1):25-34. PubMed ID: 11135001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential roles of mGluR1 and inhibitory synaptic transmission in NMDA-independent long-term potentiation in the spinal trigeminal interpolaris.
    Kim SY; Weon H; Youn DH
    Life Sci; 2016 Jan; 144():54-60. PubMed ID: 26620765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMPA receptor-PDZ interactions in facilitation of spinal sensory synapses.
    Li P; Kerchner GA; Sala C; Wei F; Huettner JE; Sheng M; Zhuo M
    Nat Neurosci; 1999 Nov; 2(11):972-7. PubMed ID: 10526335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of fetal infraorbital nerve transection upon trigeminal primary afferent projections in the rat.
    Rhoades RW; Chiaia NL; Macdonald GJ; Jacquin MF
    J Comp Neurol; 1989 Sep; 287(1):82-97. PubMed ID: 2794125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infraorbital nerve transection and whisker follicle removal in adult rats affect microglia and astrocytes in the trigeminal brainstem. A study with lipocortin1- and S100beta-immunohistochemistry.
    Melzer P; Zhang MZ; McKanna JA
    Neuroscience; 1997 Sep; 80(2):459-72. PubMed ID: 9284349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatomical consequences of neonatal infraorbital nerve transection upon the trigeminal ganglion and vibrissa follicle nerves in the adult rat.
    Klein BG; Renehan WE; Jacquin MF; Rhoades RW
    J Comp Neurol; 1988 Feb; 268(4):469-88. PubMed ID: 2451683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.