BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 17475809)

  • 1. Molecular approximations between residues 21 and 23 of secretin and its receptor: development of a model for peptide docking with the amino terminus of the secretin receptor.
    Dong M; Lam PC; Gao F; Hosohata K; Pinon DI; Sexton PM; Abagyan R; Miller LJ
    Mol Pharmacol; 2007 Aug; 72(2):280-90. PubMed ID: 17475809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular approximation between residue 10 of secretin and its receptor demonstrated by photoaffinity labeling.
    Dong M; Miller LJ
    Ann N Y Acad Sci; 2006 Jul; 1070():243-7. PubMed ID: 16888174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of natural ligand binding and activation of the Class II G-protein-coupled secretin receptor.
    Miller LJ; Dong M; Harikumar KG; Gao F
    Biochem Soc Trans; 2007 Aug; 35(Pt 4):709-12. PubMed ID: 17635130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential spatial approximation between secretin and its receptor residues in active and inactive conformations demonstrated by photoaffinity labeling.
    Dong M; Hosohata K; Pinon DI; Muthukumaraswamy N; Miller LJ
    Mol Endocrinol; 2006 Jul; 20(7):1688-98. PubMed ID: 16513792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible endogenous agonist mechanism for the activation of secretin family G protein-coupled receptors.
    Dong M; Pinon DI; Asmann YW; Miller LJ
    Mol Pharmacol; 2006 Jul; 70(1):206-13. PubMed ID: 16531505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial approximation between secretin residue five and the third extracellular loop of its receptor provides new insight into the molecular basis of natural agonist binding.
    Dong M; Lam PC; Pinon DI; Sexton PM; Abagyan R; Miller LJ
    Mol Pharmacol; 2008 Aug; 74(2):413-22. PubMed ID: 18467541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial approximation between two residues in the mid-region of secretin and the amino terminus of its receptor. Incorporation of seven sets of such constraints into a three-dimensional model of the agonist-bound secretin receptor.
    Dong M; Li Z; Zang M; Pinon DI; Lybrand TP; Miller LJ
    J Biol Chem; 2003 Nov; 278(48):48300-12. PubMed ID: 14500709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence resonance energy transfer analysis of secretin docking to its receptor: mapping distances between residues distributed throughout the ligand pharmacophore and distinct receptor residues.
    Harikumar KG; Lam PC; Dong M; Sexton PM; Abagyan R; Miller LJ
    J Biol Chem; 2007 Nov; 282(45):32834-43. PubMed ID: 17827151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction among four residues distributed through the secretin pharmacophore and a focused region of the secretin receptor amino terminus.
    Dong M; Zang M; Pinon DI; Li Z; Lybrand TP; Miller LJ
    Mol Endocrinol; 2002 Nov; 16(11):2490-501. PubMed ID: 12403838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial approximation between a photolabile residue in position 13 of secretin and the amino terminus of the secretin receptor.
    Zang M; Dong M; Pinon DI; Ding XQ; Hadac EM; Li Z; Lybrand TP; Miller LJ
    Mol Pharmacol; 2003 May; 63(5):993-1001. PubMed ID: 12695527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial approximation between the amino terminus of a peptide agonist and the top of the sixth transmembrane segment of the secretin receptor.
    Dong M; Li Z; Pinon DI; Lybrand TP; Miller LJ
    J Biol Chem; 2004 Jan; 279(4):2894-903. PubMed ID: 14593094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of a specific site of covalent labeling of the human motilin receptor using a biologically active photolabile motilin analog.
    Matsuura B; Dong M; Coulie B; Pinon DI; Miller LJ
    J Pharmacol Exp Ther; 2005 Jun; 313(3):1101-8. PubMed ID: 15677347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-chimeric analysis of selectivity of secretin and VPAC(1) receptor activation.
    Park CG; Ganguli SC; Pinon DI; Hadac EM; Miller LJ
    J Pharmacol Exp Ther; 2000 Nov; 295(2):682-8. PubMed ID: 11046106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Cysteine Trapping to Map Spatial Approximations between Residues Contributing to the Helix N-capping Motif of Secretin and Distinct Residues within Each of the Extracellular Loops of Its Receptor.
    Dong M; Lam PC; Orry A; Sexton PM; Christopoulos A; Abagyan R; Miller LJ
    J Biol Chem; 2016 Mar; 291(10):5172-84. PubMed ID: 26740626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular basis of secretin docking to its intact receptor using multiple photolabile probes distributed throughout the pharmacophore.
    Dong M; Lam PC; Pinon DI; Hosohata K; Orry A; Sexton PM; Abagyan R; Miller LJ
    J Biol Chem; 2011 Jul; 286(27):23888-99. PubMed ID: 21566140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the structure and molecular basis of ligand docking to the G protein-coupled secretin receptor using charge-modified amino-terminal agonist probes.
    Dong M; Pinon DI; Miller LJ
    Mol Endocrinol; 2005 Jul; 19(7):1821-36. PubMed ID: 15731172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential docking of high-affinity peptide ligands to type A and B cholecystokinin receptors demonstrated by photoaffinity labeling.
    Dong M; Liu G; Pinon DI; Miller LJ
    Biochemistry; 2005 May; 44(17):6693-700. PubMed ID: 15850403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A peptide agonist acts by occupation of a monomeric G protein-coupled receptor: dual sites of covalent attachment to domains near TM1 and TM7 of the same molecule make biologically significant domain-swapped dimerization unlikely.
    Hadac EM; Ji Z; Pinon DI; Henne RM; Lybrand TP; Miller LJ
    J Med Chem; 1999 Jun; 42(12):2105-11. PubMed ID: 10377216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secretin occupies a single protomer of the homodimeric secretin receptor complex: insights from photoaffinity labeling studies using dual sites of covalent attachment.
    Dong M; Lam PC; Pinon DI; Orry A; Sexton PM; Abagyan R; Miller LJ
    J Biol Chem; 2010 Mar; 285(13):9919-9931. PubMed ID: 20100828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of photoaffinity labeling to understand the molecular basis of ligand binding to the secretin receptor.
    Dong M; Miller LJ
    Ann N Y Acad Sci; 2006 Jul; 1070():248-64. PubMed ID: 16888175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.