These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

587 related articles for article (PubMed ID: 17476377)

  • 1. Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms.
    Yang S; Undar A; Zahn JD
    Lab Chip; 2007 May; 7(5):588-95. PubMed ID: 17476377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic devices for continuous blood plasma separation and analysis during pediatric cardiopulmonary bypass procedures.
    Yang S; Ji B; Undar A; Zahn JD
    ASAIO J; 2006; 52(6):698-704. PubMed ID: 17117061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous sample washing and concentration using a "trapping-and-releasing" mechanism of magnetic beads on a microfluidic chip.
    Ramadan Q; Gijs MA
    Analyst; 2011 Mar; 136(6):1157-66. PubMed ID: 21270982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptides, antibodies, and FRET on beads in flow cytometry: A model system using fluoresceinated and biotinylated beta-endorphin.
    Buranda T; Lopez GP; Keij J; Harris R; Sklar LA
    Cytometry; 1999 Sep; 37(1):21-31. PubMed ID: 10451503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bead packing and release using flexible polydimethylsiloxane membrane for semi-continuous biosensing.
    Yoo SK; Kim YM; Yoon SY; Kwon HS; Lee JH; Yang S
    Artif Organs; 2011 Jul; 35(7):E136-44. PubMed ID: 21658079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic device for continuous, real time blood plasma separation.
    Yang S; Undar A; Zahn JD
    Lab Chip; 2006 Jul; 6(7):871-80. PubMed ID: 16804591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection.
    Holmes D; Morgan H; Green NG
    Biosens Bioelectron; 2006 Feb; 21(8):1621-30. PubMed ID: 16332434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence affinity sensing by using a self-contained fluid manoeuvring microfluidic chip.
    Hong JW; Chung KH; Yoon HC
    Analyst; 2008 Apr; 133(4):499-504. PubMed ID: 18365120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical detection of germination of viable model Bacillus anthracis spores in microfluidic biochips.
    Liu YS; Walter TM; Chang WJ; Lim KS; Yang L; Lee SW; Aronson A; Bashir R
    Lab Chip; 2007 May; 7(5):603-10. PubMed ID: 17476379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a microfluidic biosensor module for pathogen detection.
    Zaytseva NV; Goral VN; Montagna RA; Baeumner AJ
    Lab Chip; 2005 Aug; 5(8):805-11. PubMed ID: 16027930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow.
    Peyman SA; Iles A; Pamme N
    Lab Chip; 2009 Nov; 9(21):3110-7. PubMed ID: 19823727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous microfluidic DNA extraction using phase-transfer magnetophoresis.
    Karle M; Miwa J; Czilwik G; Auwärter V; Roth G; Zengerle R; von Stetten F
    Lab Chip; 2010 Dec; 10(23):3284-90. PubMed ID: 20938545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel microfluidic concept for bioanalysis using freely moving beads trapped in recirculating flows.
    Lettieri GL; Dodge A; Boer G; de Rooij NF; Verpoorte E
    Lab Chip; 2003 Feb; 3(1):34-9. PubMed ID: 15100803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous flow separation of particles within an asymmetric microfluidic device.
    Zhang X; Cooper JM; Monaghan PB; Haswell SJ
    Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic-based electrochemical genosensor coupled to magnetic beads for hybridization detection.
    Berti F; Laschi S; Palchetti I; Rossier JS; Reymond F; Mascini M; Marrazza G
    Talanta; 2009 Jan; 77(3):971-8. PubMed ID: 19064077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sample concentration and impedance detection on a microfluidic polymer chip.
    Sabounchi P; Morales AM; Ponce P; Lee LP; Simmons BA; Davalos RV
    Biomed Microdevices; 2008 Oct; 10(5):661-70. PubMed ID: 18484178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method of binding kinetics of a ligand to micropatterned proteins on a microfluidic chip.
    Lee CS; Lee SH; Kim YG; Lee JH; Kim YK; Kim BG
    Biosens Bioelectron; 2007 Jan; 22(6):891-8. PubMed ID: 16679009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A polymer-based microfluidic device for immunosensing biochips.
    Soo Ko J; Yoon HC; Yang H; Pyo HB; Hyo Chung K; Jin Kim S; Tae Kim Y
    Lab Chip; 2003 May; 3(2):106-13. PubMed ID: 15100791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.