These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 17477387)

  • 1. A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic Nitinol tube.
    Robertson SW; Ritchie RO
    J Biomed Mater Res B Appl Biomater; 2008 Jan; 84(1):26-33. PubMed ID: 17477387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects.
    Robertson SW; Ritchie RO
    Biomaterials; 2007 Feb; 28(4):700-9. PubMed ID: 17034845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue-crack growth properties of thin-walled superelastic austenitic Nitinol tube for endovascular stents.
    Stankiewicz JM; Robertson SW; Ritchie RO
    J Biomed Mater Res A; 2007 Jun; 81(3):685-91. PubMed ID: 17187394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices.
    Runciman A; Xu D; Pelton AR; Ritchie RO
    Biomaterials; 2011 Aug; 32(22):4987-93. PubMed ID: 21531019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material.
    McKelvey AL; Ritchie RO
    J Biomed Mater Res; 1999 Dec; 47(3):301-8. PubMed ID: 10487880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallographic texture for tube and plate of the superelastic/shape-memory alloy Nitinol used for endovascular stents.
    Robertson SW; Imbeni V; Wenk HR; Ritchie RO
    J Biomed Mater Res A; 2005 Feb; 72(2):190-9. PubMed ID: 15625682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing.
    Robertson SW; Launey M; Shelley O; Ong I; Vien L; Senthilnathan K; Saffari P; Schlegel S; Pelton AR
    J Mech Behav Biomed Mater; 2015 Nov; 51():119-31. PubMed ID: 26241890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High compressive pre-strains reduce the bending fatigue life of nitinol wire.
    Gupta S; Pelton AR; Weaver JD; Gong XY; Nagaraja S
    J Mech Behav Biomed Mater; 2015 Apr; 44():96-108. PubMed ID: 25625888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of severe grain refinement on the damage tolerance of a superelastic NiTi shape memory alloy.
    Leitner T; Sabirov I; Pippan R; Hohenwarter A
    J Mech Behav Biomed Mater; 2017 Jul; 71():337-348. PubMed ID: 28399494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of thermomechanical texture on the superelastic response of Nitinol implants.
    Barney MM; Xu D; Robertson SW; Schroeder V; Ritchie RO; Pelton AR; Mehta A
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1431-9. PubMed ID: 21783153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the experimental testing of fine Nitinol wires for medical devices.
    Henderson E; Nash DH; Dempster WM
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):261-8. PubMed ID: 21316613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications.
    Ritchie RO; Dauskardt RH; Yu WK; Brendzel AM
    J Biomed Mater Res; 1990 Feb; 24(2):189-206. PubMed ID: 2329114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the fatigue life of titanium alloys for biomedical devices through microstructural control.
    Niinomi M; Akahori T
    Expert Rev Med Devices; 2010 Jul; 7(4):481-8. PubMed ID: 20583885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of microstructural purity on the bending fatigue behavior of VAR-melted superelastic Nitinol.
    Launey M; Robertson SW; Vien L; Senthilnathan K; Chintapalli P; Pelton AR
    J Mech Behav Biomed Mater; 2014 Jun; 34():181-6. PubMed ID: 24603214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of mechanical and microstructural properties of constrained groove pressed nitinol shape memory alloy for biomedical applications.
    Bhardwaj A; Gupta AK; Padisala SK; Poluri K
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():730-742. PubMed ID: 31147045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue and durability of Nitinol stents.
    Pelton AR; Schroeder V; Mitchell MR; Gong XY; Barney M; Robertson SW
    J Mech Behav Biomed Mater; 2008 Apr; 1(2):153-64. PubMed ID: 19627780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Working with nitinol shape memory alloys: Part II.
    Hurlstone CJ
    Med Device Technol; 2000 Nov; 11(9):24-9. PubMed ID: 11146866
    [No Abstract]   [Full Text] [Related]  

  • 18. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses.
    Dordoni E; Meoli A; Wu W; Dubini G; Migliavacca F; Pennati G; Petrini L
    Med Eng Phys; 2014 Jul; 36(7):842-9. PubMed ID: 24721457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomechanical characterization of alumina coatings grown on FeCrAl alloy by thermal oxidation.
    Frutos E; González-Carrasco JL; Polcar T
    J Mech Behav Biomed Mater; 2016 Apr; 57():310-20. PubMed ID: 26875145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.