These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 17477447)
1. Bone regeneration on macroporous aqueous-derived silk 3-D scaffolds. Kim HJ; Kim UJ; Leisk GG; Bayan C; Georgakoudi I; Kaplan DL Macromol Biosci; 2007 May; 7(5):643-55. PubMed ID: 17477447 [TBL] [Abstract][Full Text] [Related]
2. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373 [TBL] [Abstract][Full Text] [Related]
3. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Mandal BB; Kundu SC Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621 [TBL] [Abstract][Full Text] [Related]
4. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Mygind T; Stiehler M; Baatrup A; Li H; Zou X; Flyvbjerg A; Kassem M; Bünger C Biomaterials; 2007 Feb; 28(6):1036-47. PubMed ID: 17081601 [TBL] [Abstract][Full Text] [Related]
5. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. Meinel L; Karageorgiou V; Hofmann S; Fajardo R; Snyder B; Li C; Zichner L; Langer R; Vunjak-Novakovic G; Kaplan DL J Biomed Mater Res A; 2004 Oct; 71(1):25-34. PubMed ID: 15316936 [TBL] [Abstract][Full Text] [Related]
6. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961 [TBL] [Abstract][Full Text] [Related]
7. Flow perfusion culture of human mesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes. Bjerre L; Bünger C; Baatrup A; Kassem M; Mygind T J Biomed Mater Res A; 2011 Jun; 97(3):251-63. PubMed ID: 21442726 [TBL] [Abstract][Full Text] [Related]
8. Proliferation and osteogenesis of immortalized bone marrow-derived mesenchymal stem cells in porous polylactic glycolic acid scaffolds under perfusion culture. Yang J; Cao C; Wang W; Tong X; Shi D; Wu F; Zheng Q; Guo C; Pan Z; Gao C; Wang J J Biomed Mater Res A; 2010 Mar; 92(3):817-29. PubMed ID: 19280635 [TBL] [Abstract][Full Text] [Related]
9. Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. Stiehler M; Bünger C; Baatrup A; Lind M; Kassem M; Mygind T J Biomed Mater Res A; 2009 Apr; 89(1):96-107. PubMed ID: 18431785 [TBL] [Abstract][Full Text] [Related]
10. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds. Mandal BB; Kundu SC Biomaterials; 2009 Oct; 30(28):5019-30. PubMed ID: 19577292 [TBL] [Abstract][Full Text] [Related]
11. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Meinel L; Hofmann S; Karageorgiou V; Zichner L; Langer R; Kaplan D; Vunjak-Novakovic G Biotechnol Bioeng; 2004 Nov; 88(3):379-91. PubMed ID: 15486944 [TBL] [Abstract][Full Text] [Related]
12. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. Sikavitsas VI; Bancroft GN; Mikos AG J Biomed Mater Res; 2002 Oct; 62(1):136-48. PubMed ID: 12124795 [TBL] [Abstract][Full Text] [Related]
13. Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Garcia-Fuentes M; Meinel AJ; Hilbe M; Meinel L; Merkle HP Biomaterials; 2009 Oct; 30(28):5068-76. PubMed ID: 19564040 [TBL] [Abstract][Full Text] [Related]
14. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7. Zhang Y; Fan W; Ma Z; Wu C; Fang W; Liu G; Xiao Y Acta Biomater; 2010 Aug; 6(8):3021-8. PubMed ID: 20188872 [TBL] [Abstract][Full Text] [Related]
15. Initial cell pre-cultivation can maximize ECM mineralization by human mesenchymal stem cells on silk fibroin scaffolds. Thimm BW; Wüst S; Hofmann S; Hagenmüller H; Müller R Acta Biomater; 2011 May; 7(5):2218-28. PubMed ID: 21300186 [TBL] [Abstract][Full Text] [Related]
16. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. Gomes ME; Sikavitsas VI; Behravesh E; Reis RL; Mikos AG J Biomed Mater Res A; 2003 Oct; 67(1):87-95. PubMed ID: 14517865 [TBL] [Abstract][Full Text] [Related]
17. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications. Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Charbord P; Delorme B; Reis RL; Neves NM Biomacromolecules; 2009 Aug; 10(8):2067-73. PubMed ID: 19621927 [TBL] [Abstract][Full Text] [Related]
18. Osteoblast response to continuous phase macroporous scaffolds under static and dynamic culture conditions. Meretoja VV; Malin M; Seppälä JV; Närhi TO J Biomed Mater Res A; 2009 May; 89(2):317-25. PubMed ID: 18431787 [TBL] [Abstract][Full Text] [Related]
19. Regulation of adult human mesenchymal stem cells into osteogenic and chondrogenic lineages by different bioreactor systems. Wang TW; Wu HC; Wang HY; Lin FH; Sun JS J Biomed Mater Res A; 2009 Mar; 88(4):935-46. PubMed ID: 18384159 [TBL] [Abstract][Full Text] [Related]
20. Dynamic cultivation of human mesenchymal stem cells in a rotating bed bioreactor system based on the Z RP platform. Diederichs S; Röker S; Marten D; Peterbauer A; Scheper T; van Griensven M; Kasper C Biotechnol Prog; 2009; 25(6):1762-71. PubMed ID: 19795480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]