These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17477494)

  • 1. Computing the reversal distance between genomes in the presence of multi-gene families via binary integer programming.
    Suksawatchon J; Lursinsap C; Bodén M
    J Bioinform Comput Biol; 2007 Feb; 5(1):117-33. PubMed ID: 17477494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An algorithm to enumerate sorting reversals for signed permutations.
    Siepel AC
    J Comput Biol; 2003; 10(3-4):575-97. PubMed ID: 12935346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome rearrangement based on reversals that preserve conserved intervals.
    Bernt M; Merkle D; Middendorf M
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(3):275-88. PubMed ID: 17048465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perfect sorting by reversals is not always difficult.
    Bérard S; Bergeron A; Chauve C; Paul C
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(1):4-16. PubMed ID: 17277409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed integer linear programming for maximum-parsimony phylogeny inference.
    Sridhar S; Lam F; Blelloch GE; Ravi R; Schwartz R
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(3):323-31. PubMed ID: 18670037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.
    Lyubetsky V; Gershgorin R; Gorbunov K
    BMC Bioinformatics; 2017 Dec; 18(1):537. PubMed ID: 29212445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computing the Rearrangement Distance of Natural Genomes.
    Bohnenkämper L; Braga MDV; Doerr D; Stoye J
    J Comput Biol; 2021 Apr; 28(4):410-431. PubMed ID: 33393848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solving the preserving reversal median problem.
    Bernt M; Merkle D; Middendorf M
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(3):332-47. PubMed ID: 18670038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution under reversals: parsimony and conservation of common intervals.
    Diekmann Y; Sagot MF; Tannier E
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(2):301-9. PubMed ID: 17473322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common intervals and sorting by reversals: a marriage of necessity.
    Bergeron A; Heber S; Stoye J
    Bioinformatics; 2002; 18 Suppl 2():S54-63. PubMed ID: 12385983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New bounds and tractable instances for the transposition distance.
    Labarre A
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(4):380-94. PubMed ID: 17085847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partition-distance via the assignment problem.
    Konovalov DA; Litow B; Bajema N
    Bioinformatics; 2005 May; 21(10):2463-8. PubMed ID: 15746275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On sorting by translocations.
    Bergeron A; Mixtacki J; Stoye J
    J Comput Biol; 2006 Mar; 13(2):567-78. PubMed ID: 16597257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconciliation with non-binary species trees.
    Vernot B; Stolzer M; Goldman A; Durand D
    Comput Syst Bioinformatics Conf; 2007; 6():441-52. PubMed ID: 17951846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A gene pattern mining algorithm using interchangeable gene sets for prokaryotes.
    Hu M; Choi K; Su W; Kim S; Yang J
    BMC Bioinformatics; 2008 Feb; 9():124. PubMed ID: 18302784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the solution space of sorting by reversals, with experiments and an application to evolution.
    Braga MD; Sagot MF; Scornavacca C; Tannier E
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(3):348-56. PubMed ID: 18670039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome rearrangement with gene families.
    Sankoff D
    Bioinformatics; 1999 Nov; 15(11):909-17. PubMed ID: 10743557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Cooperative Co-Evolutionary Genetic Algorithm for Tree Scoring and Ancestral Genome Inference.
    Gao N; Zhang Y; Feng B; Tang J
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1248-54. PubMed ID: 26671797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two notes on genome rearrangement.
    Ozery-Flato M; Shamir R
    J Bioinform Comput Biol; 2003 Apr; 1(1):71-94. PubMed ID: 15290782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing the all-pairs quartet distance on a set of evolutionary trees.
    Stissing M; Mailund T; Pedersen CN; Brodal GS; Fagerberg R
    J Bioinform Comput Biol; 2008 Feb; 6(1):37-50. PubMed ID: 18324744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.