These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 17477513)
21. Photodissociation pathways and lifetimes of protonated peptides and their dimers. Aravind G; Klærke B; Rajput J; Toker Y; Andersen LH; Bochenkova AV; Antoine R; Lemoine J; Racaud A; Dugourd P J Chem Phys; 2012 Jan; 136(1):014307. PubMed ID: 22239781 [TBL] [Abstract][Full Text] [Related]
22. A tiny excited-state barrier can induce a multiexponential decay of the retinal chromophore: a quantum dynamics investigation. Olivucci M; Lami A; Santoro F Angew Chem Int Ed Engl; 2005 Aug; 44(32):5118-21. PubMed ID: 16035016 [No Abstract] [Full Text] [Related]
23. Fluorescence and excited state dynamics of the deprotonated Schiff base retinal in proteorhodopsin. Bühl E; Braun M; Lakatos A; Glaubitz C; Wachtveitl J Biol Chem; 2015 Sep; 396(9-10):1109-15. PubMed ID: 26083266 [TBL] [Abstract][Full Text] [Related]
24. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin. Matsumoto H; Yoshizawa T Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914 [TBL] [Abstract][Full Text] [Related]
25. [Photochemical properties of a bacteriorhodopsin analogue containing 13-desmethyl-13-(trifluoromethyl)retinal]. Lukashev EP; Pronskaia NA Biofizika; 2006; 51(3):446-53. PubMed ID: 16808343 [TBL] [Abstract][Full Text] [Related]
26. Solvent effects on the low-lying excited states of a model of retinal. Muñoz Losa A; Fdez Galván I; Martín ME; Aguilar MA J Phys Chem B; 2006 Sep; 110(36):18064-71. PubMed ID: 16956299 [TBL] [Abstract][Full Text] [Related]
27. Partial dehydration of the retinal binding pocket and proof for photochemical deprotonation of the retinal Schiff base in bicelle bacteriorhodopsin crystals. Sanii LS; El-Sayed MA Photochem Photobiol; 2005; 81(6):1356-60. PubMed ID: 16097857 [TBL] [Abstract][Full Text] [Related]
28. Direct observation of the coherent nuclear response after the absorption of a photon. Liebel M; Schnedermann C; Bassolino G; Taylor G; Watts A; Kukura P Phys Rev Lett; 2014 Jun; 112(23):238301. PubMed ID: 24972232 [TBL] [Abstract][Full Text] [Related]
29. Photochemistry of a retinal protonated schiff-base analogue mimicking the opsin shift of bacteriorhodopsin. Bismuth O; Friedman N; Sheves M; Ruhman S J Phys Chem B; 2007 Mar; 111(9):2327-34. PubMed ID: 17298090 [TBL] [Abstract][Full Text] [Related]
31. Vibrational spectroscopy of bare and solvated ionic complexes of biological relevance. Polfer NC; Oomens J Mass Spectrom Rev; 2009; 28(3):468-94. PubMed ID: 19241457 [TBL] [Abstract][Full Text] [Related]
32. Evidence for the Two-State-Two-Mode model in retinal protonated Schiff-bases from pump degenerate four-wave-mixing experiments. Kraack JP; Buckup T; Motzkus M Phys Chem Chem Phys; 2012 Oct; 14(40):13979-88. PubMed ID: 22990940 [TBL] [Abstract][Full Text] [Related]
33. Photoisomerization action spectrum of retinal protonated Schiff base in the gas phase. Coughlan NJ; Catani KJ; Adamson BD; Wille U; Bieske EJ J Chem Phys; 2014 Apr; 140(16):164307. PubMed ID: 24784270 [TBL] [Abstract][Full Text] [Related]
34. An opsin shift in rhodopsin: retinal S0-S1 excitation in protein, in solution, and in the gas phase. Bravaya K; Bochenkova A; Granovsky A; Nemukhin A J Am Chem Soc; 2007 Oct; 129(43):13035-42. PubMed ID: 17924622 [TBL] [Abstract][Full Text] [Related]
35. A new technique for time-resolved daughter ion mass spectrometry on the microsecond to millisecond time scale using an electrostatic ion storage ring. Støchkel K; Kadhane U; Andersen JU; Holm AI; Hvelplund P; Kirketerp MB; Larsen MK; Lykkegaard MK; Nielsen SB; Panja S; Zettergren H Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023107. PubMed ID: 18315283 [TBL] [Abstract][Full Text] [Related]
36. Retinal-salinixanthin interactions in xanthorhodopsin: [corrected] a circular dichroism (CD) spectroscopy study with artificial pigments. Smolensky E; Sheves M Biochemistry; 2009 Sep; 48(34):8179-88. PubMed ID: 19637932 [TBL] [Abstract][Full Text] [Related]
37. Photodissociation of CH2I2 and subsequent electron transfer in solution. Saitow K; Naitoh Y; Tominaga K; Yoshihara K Chem Asian J; 2008 Apr; 3(4):696-709. PubMed ID: 18381663 [TBL] [Abstract][Full Text] [Related]
38. Decisive role of electronic polarization of the protein environment in determining the absorption maximum of halorhodopsin. Sakurai M; Sakata K; Saito S; Nakajima S; Inoue Y J Am Chem Soc; 2003 Mar; 125(10):3108-12. PubMed ID: 12617678 [TBL] [Abstract][Full Text] [Related]
39. Bicycle-pedal isomerization in a rhodopsin chromophore model. Schapiro I; Weingart O; Buss V J Am Chem Soc; 2009 Jan; 131(1):16-7. PubMed ID: 19072155 [TBL] [Abstract][Full Text] [Related]