BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 17477530)

  • 1. Singlet oxygen production by Peptide-coated quantum dot-photosensitizer conjugates.
    Tsay JM; Trzoss M; Shi L; Kong X; Selke M; Jung ME; Weiss S
    J Am Chem Soc; 2007 May; 129(21):6865-71. PubMed ID: 17477530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PEG-Phospholipids Coated Quantum Rods as Amplifiers of the Photosensitization Process by FRET.
    Timor R; Weitman H; Waiskopf N; Banin U; Ehrenberg B
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21107-14. PubMed ID: 26334672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dithiaporphyrin derivatives as photosensitizers in membranes and cells.
    Minnes R; Weitman H; You Y; Detty MR; Ehrenberg B
    J Phys Chem B; 2008 Mar; 112(10):3268-76. PubMed ID: 18278897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FRET quenching of photosensitizer singlet oxygen generation.
    Lovell JF; Chen J; Jarvi MT; Cao WG; Allen AD; Liu Y; Tidwell TT; Wilson BC; Zheng G
    J Phys Chem B; 2009 Mar; 113(10):3203-11. PubMed ID: 19708269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of meso-tetra-(4-sulfonatophenyl) porphyrin (TPPS
    Tsolekile N; Ncapayi V; Obiyenwa GK; Matoetoe M; Songca S; Oluwafemi OS
    Int J Nanomedicine; 2019; 14():7065-7078. PubMed ID: 31507320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorin photosensitizers sterically designed to prevent self-aggregation.
    Uchoa AF; de Oliveira KT; Baptista MS; Bortoluzzi AJ; Iamamoto Y; Serra OA
    J Org Chem; 2011 Nov; 76(21):8824-32. PubMed ID: 21932835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites.
    Shi L; Hernandez B; Selke M
    J Am Chem Soc; 2006 May; 128(19):6278-9. PubMed ID: 16683767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porphyrin-based photosensitizers and their DNA conjugates for singlet oxygen induced nucleic acid interstrand crosslinking.
    Llamas EM; Tome JPC; Rodrigues JMM; Torres T; Madder A
    Org Biomol Chem; 2017 Jun; 15(25):5402-5409. PubMed ID: 28627569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular uptake and photosensitizing properties of quantum dot-chlorin e6 complex: in vitro study.
    Steponkiene S; Valanciunaite J; Skripka A; Rotomskis R
    J Biomed Nanotechnol; 2014 Apr; 10(4):679-86. PubMed ID: 24734520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodynamic therapy potential of thiol-stabilized CdTe quantum dot-group 3A phthalocyanine conjugates (QD-Pc).
    Tekdaş DA; Durmuş M; Yanık H; Ahsen V
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():313-20. PubMed ID: 22484269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibacterial application of covalently immobilized photosensitizers on a surface.
    Kim HS; Cha EJ; Kang HJ; Park JH; Lee J; Park HD
    Environ Res; 2019 May; 172():34-42. PubMed ID: 30769187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen luminescence quenching.
    Sève A; Couleaud P; Lux F; Tillement O; Arnoux P; André JC; Frochot C
    Photochem Photobiol Sci; 2012 May; 11(5):803-11. PubMed ID: 22362130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiconductor quantum dots for photodynamic therapy.
    Samia AC; Chen X; Burda C
    J Am Chem Soc; 2003 Dec; 125(51):15736-7. PubMed ID: 14677951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-photon excited quantum dots as energy donors for photosensitizer chlorin e6.
    Skripka A; Valanciunaite J; Dauderis G; Poderys V; Kubiliute R; Rotomskis R
    J Biomed Opt; 2013 Jul; 18(7):078002. PubMed ID: 23864017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical modification of a tetrapyrrole-type photosensitizer: tuning application and photochemical action beyond the singlet oxygen channel.
    Riyad YM; Naumov S; Schastak S; Griebel J; Kahnt A; Häupl T; Neuhaus J; Abel B; Hermann R
    J Phys Chem B; 2014 Oct; 118(40):11646-58. PubMed ID: 25207950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Singlet-oxygen oxidation of 5-hydroxymethylfurfural in continuous flow.
    Heugebaert TS; Stevens CV; Kappe CO
    ChemSusChem; 2015 May; 8(10):1648-51. PubMed ID: 25505009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Energy Transfer in a Donor-Acceptor Photosensitizer Triggers Efficient Photodynamic Therapy.
    Zhao Y; Zhang Z; Lu Z; Wang H; Tang Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38467-38474. PubMed ID: 31553165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The challenging combination of intense fluorescence and high singlet oxygen quantum yield in photostable chlorins--a contribution to theranostics.
    Silva EF; Schaberle FA; Monteiro CJ; Dąbrowski JM; Arnaut LG
    Photochem Photobiol Sci; 2013 Jul; 12(7):1187-92. PubMed ID: 23584281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photophysical properties gallium octacarboxy phthalocyanines conjugated to CdSe@ZnS quantum dots.
    Tshangana C; Nyokong T
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():397-404. PubMed ID: 26143333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Singlet oxygen-sensitized delayed fluorescence of common water-soluble photosensitizers.
    Scholz M; Dědic R; Breitenbach T; Hála J
    Photochem Photobiol Sci; 2013 Oct; 12(10):1873-84. PubMed ID: 23949211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.