These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 17477530)
1. Singlet oxygen production by Peptide-coated quantum dot-photosensitizer conjugates. Tsay JM; Trzoss M; Shi L; Kong X; Selke M; Jung ME; Weiss S J Am Chem Soc; 2007 May; 129(21):6865-71. PubMed ID: 17477530 [TBL] [Abstract][Full Text] [Related]
2. PEG-Phospholipids Coated Quantum Rods as Amplifiers of the Photosensitization Process by FRET. Timor R; Weitman H; Waiskopf N; Banin U; Ehrenberg B ACS Appl Mater Interfaces; 2015 Sep; 7(38):21107-14. PubMed ID: 26334672 [TBL] [Abstract][Full Text] [Related]
3. Dithiaporphyrin derivatives as photosensitizers in membranes and cells. Minnes R; Weitman H; You Y; Detty MR; Ehrenberg B J Phys Chem B; 2008 Mar; 112(10):3268-76. PubMed ID: 18278897 [TBL] [Abstract][Full Text] [Related]
4. FRET quenching of photosensitizer singlet oxygen generation. Lovell JF; Chen J; Jarvi MT; Cao WG; Allen AD; Liu Y; Tidwell TT; Wilson BC; Zheng G J Phys Chem B; 2009 Mar; 113(10):3203-11. PubMed ID: 19708269 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of meso-tetra-(4-sulfonatophenyl) porphyrin (TPPS Tsolekile N; Ncapayi V; Obiyenwa GK; Matoetoe M; Songca S; Oluwafemi OS Int J Nanomedicine; 2019; 14():7065-7078. PubMed ID: 31507320 [TBL] [Abstract][Full Text] [Related]
6. Chlorin photosensitizers sterically designed to prevent self-aggregation. Uchoa AF; de Oliveira KT; Baptista MS; Bortoluzzi AJ; Iamamoto Y; Serra OA J Org Chem; 2011 Nov; 76(21):8824-32. PubMed ID: 21932835 [TBL] [Abstract][Full Text] [Related]
7. Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites. Shi L; Hernandez B; Selke M J Am Chem Soc; 2006 May; 128(19):6278-9. PubMed ID: 16683767 [TBL] [Abstract][Full Text] [Related]
8. Porphyrin-based photosensitizers and their DNA conjugates for singlet oxygen induced nucleic acid interstrand crosslinking. Llamas EM; Tome JPC; Rodrigues JMM; Torres T; Madder A Org Biomol Chem; 2017 Jun; 15(25):5402-5409. PubMed ID: 28627569 [TBL] [Abstract][Full Text] [Related]
9. Cellular uptake and photosensitizing properties of quantum dot-chlorin e6 complex: in vitro study. Steponkiene S; Valanciunaite J; Skripka A; Rotomskis R J Biomed Nanotechnol; 2014 Apr; 10(4):679-86. PubMed ID: 24734520 [TBL] [Abstract][Full Text] [Related]
10. Photodynamic therapy potential of thiol-stabilized CdTe quantum dot-group 3A phthalocyanine conjugates (QD-Pc). Tekdaş DA; Durmuş M; Yanık H; Ahsen V Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():313-20. PubMed ID: 22484269 [TBL] [Abstract][Full Text] [Related]
11. Antibacterial application of covalently immobilized photosensitizers on a surface. Kim HS; Cha EJ; Kang HJ; Park JH; Lee J; Park HD Environ Res; 2019 May; 172():34-42. PubMed ID: 30769187 [TBL] [Abstract][Full Text] [Related]
12. Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen luminescence quenching. Sève A; Couleaud P; Lux F; Tillement O; Arnoux P; André JC; Frochot C Photochem Photobiol Sci; 2012 May; 11(5):803-11. PubMed ID: 22362130 [TBL] [Abstract][Full Text] [Related]
13. Semiconductor quantum dots for photodynamic therapy. Samia AC; Chen X; Burda C J Am Chem Soc; 2003 Dec; 125(51):15736-7. PubMed ID: 14677951 [TBL] [Abstract][Full Text] [Related]
14. Two-photon excited quantum dots as energy donors for photosensitizer chlorin e6. Skripka A; Valanciunaite J; Dauderis G; Poderys V; Kubiliute R; Rotomskis R J Biomed Opt; 2013 Jul; 18(7):078002. PubMed ID: 23864017 [TBL] [Abstract][Full Text] [Related]
15. Chemical modification of a tetrapyrrole-type photosensitizer: tuning application and photochemical action beyond the singlet oxygen channel. Riyad YM; Naumov S; Schastak S; Griebel J; Kahnt A; Häupl T; Neuhaus J; Abel B; Hermann R J Phys Chem B; 2014 Oct; 118(40):11646-58. PubMed ID: 25207950 [TBL] [Abstract][Full Text] [Related]
16. Singlet-oxygen oxidation of 5-hydroxymethylfurfural in continuous flow. Heugebaert TS; Stevens CV; Kappe CO ChemSusChem; 2015 May; 8(10):1648-51. PubMed ID: 25505009 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Energy Transfer in a Donor-Acceptor Photosensitizer Triggers Efficient Photodynamic Therapy. Zhao Y; Zhang Z; Lu Z; Wang H; Tang Y ACS Appl Mater Interfaces; 2019 Oct; 11(42):38467-38474. PubMed ID: 31553165 [TBL] [Abstract][Full Text] [Related]
18. The challenging combination of intense fluorescence and high singlet oxygen quantum yield in photostable chlorins--a contribution to theranostics. Silva EF; Schaberle FA; Monteiro CJ; Dąbrowski JM; Arnaut LG Photochem Photobiol Sci; 2013 Jul; 12(7):1187-92. PubMed ID: 23584281 [TBL] [Abstract][Full Text] [Related]
19. Photophysical properties gallium octacarboxy phthalocyanines conjugated to CdSe@ZnS quantum dots. Tshangana C; Nyokong T Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():397-404. PubMed ID: 26143333 [TBL] [Abstract][Full Text] [Related]
20. Singlet oxygen-sensitized delayed fluorescence of common water-soluble photosensitizers. Scholz M; Dědic R; Breitenbach T; Hála J Photochem Photobiol Sci; 2013 Oct; 12(10):1873-84. PubMed ID: 23949211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]