These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 17477622)
1. Water-gas-shift reaction on metal nanoparticles and surfaces. Liu P; Rodriguez JA J Chem Phys; 2007 Apr; 126(16):164705. PubMed ID: 17477622 [TBL] [Abstract][Full Text] [Related]
2. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Rodriguez JA; Ma S; Liu P; Hrbek J; Evans J; Pérez M Science; 2007 Dec; 318(5857):1757-60. PubMed ID: 18079397 [TBL] [Abstract][Full Text] [Related]
3. Water-gas shift reaction on oxide∕Cu(111): Rational catalyst screening from density functional theory. Liu P J Chem Phys; 2010 Nov; 133(20):204705. PubMed ID: 21133450 [TBL] [Abstract][Full Text] [Related]
4. Water-gas-shift reaction on molybdenum carbide surfaces: essential role of the oxycarbide. Liu P; Rodriguez JA J Phys Chem B; 2006 Oct; 110(39):19418-25. PubMed ID: 17004800 [TBL] [Abstract][Full Text] [Related]
5. Gold, copper, and platinum nanoparticles dispersed on CeO(x)/TiO(2)(110) surfaces: high water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level. Park JB; Graciani J; Evans J; Stacchiola D; Senanayake SD; Barrio L; Liu P; Fdez Sanz J; Hrbek J; Rodriguez JA J Am Chem Soc; 2010 Jan; 132(1):356-63. PubMed ID: 19994897 [TBL] [Abstract][Full Text] [Related]
6. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Senanayake SD; Stacchiola D; Rodriguez JA Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528 [TBL] [Abstract][Full Text] [Related]
7. Au <--> N synergy and N-doping of metal oxide-based photocatalysts. Graciani J; Nambu A; Evans J; Rodriguez JA; Fdez Sanz J J Am Chem Soc; 2008 Sep; 130(36):12056-63. PubMed ID: 18700756 [TBL] [Abstract][Full Text] [Related]
8. A density functional theory study of the dissociation of H2 on gold clusters: importance of fluxionality and ensemble effects. Barrio L; Liu P; Rodríguez JA; Campos-Martín JM; Fierro JL J Chem Phys; 2006 Oct; 125(16):164715. PubMed ID: 17092128 [TBL] [Abstract][Full Text] [Related]
9. Destruction of SO2 on Au and Cu nanoparticles dispersed on MgO(100) and CeO2(111). Rodriguez JA; Liu P; Pérez M; Liu G; Hrbek J J Phys Chem A; 2010 Mar; 114(11):3802-10. PubMed ID: 19634883 [TBL] [Abstract][Full Text] [Related]
10. The activation of gold and the water-gas shift reaction: insights from studies with model catalysts. Rodriguez JA; Senanayake SD; Stacchiola D; Liu P; Hrbek J Acc Chem Res; 2014 Mar; 47(3):773-82. PubMed ID: 24191672 [TBL] [Abstract][Full Text] [Related]
11. A Cu/Pt near-surface alloy for water-gas shift catalysis. Knudsen J; Nilekar AU; Vang RT; Schnadt J; Kunkes EL; Dumesic JA; Mavrikakis M; Besenbacher F J Am Chem Soc; 2007 May; 129(20):6485-90. PubMed ID: 17469820 [TBL] [Abstract][Full Text] [Related]
12. Density functional study of water-gas shift reaction on M3O(3x)/Cu(111). Vidal AB; Liu P Phys Chem Chem Phys; 2012 Dec; 14(48):16626-32. PubMed ID: 22955873 [TBL] [Abstract][Full Text] [Related]
13. Determination of CO, H2O and H2 coverage by XANES and EXAFS on Pt and Au during water gas shift reaction. Guo N; Fingland BR; Williams WD; Kispersky VF; Jelic J; Delgass WN; Ribeiro FH; Meyer RJ; Miller JT Phys Chem Chem Phys; 2010 Jun; 12(21):5678-93. PubMed ID: 20442915 [TBL] [Abstract][Full Text] [Related]
14. Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism. Burch R Phys Chem Chem Phys; 2006 Dec; 8(47):5483-500. PubMed ID: 17136264 [TBL] [Abstract][Full Text] [Related]
15. Fundamental studies of methanol synthesis from CO(2) hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001). Yang Y; Evans J; Rodriguez JA; White MG; Liu P Phys Chem Chem Phys; 2010 Sep; 12(33):9909-17. PubMed ID: 20567756 [TBL] [Abstract][Full Text] [Related]
16. In situ/operando studies for the production of hydrogen through the water-gas shift on metal oxide catalysts. Rodriguez JA; Hanson JC; Stacchiola D; Senanayake SD Phys Chem Chem Phys; 2013 Aug; 15(29):12004-25. PubMed ID: 23660768 [TBL] [Abstract][Full Text] [Related]
17. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria. Wang X; Rodriguez JA; Hanson JC; Gamarra D; Martínez-Arias A; Fernández-García M J Phys Chem B; 2006 Jan; 110(1):428-34. PubMed ID: 16471552 [TBL] [Abstract][Full Text] [Related]
18. In situ time-resolved characterization of Au-CeO2 and AuOx-CeO2 catalysts during the water-gas shift reaction: presence of Au and O vacancies in the active phase. Wang X; Rodriguez JA; Hanson JC; Pérez M; Evans J J Chem Phys; 2005 Dec; 123(22):221101. PubMed ID: 16375458 [TBL] [Abstract][Full Text] [Related]
19. A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeO(x)/TiO2(110) catalysts. Bruix A; Rodriguez JA; Ramírez PJ; Senanayake SD; Evans J; Park JB; Stacchiola D; Liu P; Hrbek J; Illas F J Am Chem Soc; 2012 May; 134(21):8968-74. PubMed ID: 22563752 [TBL] [Abstract][Full Text] [Related]
20. On the mechanism of low-temperature water gas shift reaction on copper. Gokhale AA; Dumesic JA; Mavrikakis M J Am Chem Soc; 2008 Jan; 130(4):1402-14. PubMed ID: 18181624 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]