BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17477733)

  • 1. Assessment of blood vessel mimics with optical coherence tomography.
    Bonnema GT; Cardinal KO; McNally JB; Williams SK; Barton JK
    J Biomed Opt; 2007; 12(2):024018. PubMed ID: 17477733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT.
    Gurjarpadhye AA; Whited BM; Sampson A; Niu G; Sharma KS; Vogt WC; Wang G; Xu Y; Soker S; Rylander MN; Rylander CG
    Lasers Surg Med; 2013 Aug; 45(6):391-400. PubMed ID: 23740768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue-engineered vascular grafts as in vitro blood vessel mimics for the evaluation of endothelialization of intravascular devices.
    Cardinal KO; Bonnema GT; Hofer H; Barton JK; Williams SK
    Tissue Eng; 2006 Dec; 12(12):3431-8. PubMed ID: 17518679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automatic algorithm for detecting stent endothelialization from volumetric optical coherence tomography datasets.
    Bonnema GT; Cardinal KO; Williams SK; Barton JK
    Phys Med Biol; 2008 Jun; 53(12):3083-98. PubMed ID: 18495980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioengineering human blood vessel mimics for medical device testing using serum-free conditions and scaffold variations.
    Touroo JS; Dale JR; Williams SK
    Tissue Eng Part C Methods; 2013 Apr; 19(4):307-15. PubMed ID: 22966764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-engineered blood vessel mimics in complex geometries for intravascular device testing.
    Chavez RD; Walls SL; Cardinal KO
    PLoS One; 2019; 14(6):e0217709. PubMed ID: 31242197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography.
    Sharma U; Kang JU
    Rev Sci Instrum; 2007 Nov; 78(11):113102. PubMed ID: 18052460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-engineered aneurysm models for in vitro assessment of neurovascular devices.
    Shen TW; Puccini B; Temnyk K; Herting S; Cardinal KO
    Neuroradiology; 2019 Jun; 61(6):723-732. PubMed ID: 30918991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods and application areas of endoscopic optical coherence tomography.
    Yaqoob Z; Wu J; McDowell EJ; Heng X; Yang C
    J Biomed Opt; 2006; 11(6):063001. PubMed ID: 17212523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue characterization after drug-eluting stent implantation using optical coherence tomography.
    Malle C; Tada T; Steigerwald K; Ughi GJ; Schuster T; Nakano M; Massberg S; Jehle J; Guagliumi G; Kastrati A; Virmani R; Byrne RA; Joner M
    Arterioscler Thromb Vasc Biol; 2013 Jun; 33(6):1376-83. PubMed ID: 23539216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding Functionality of Commercial Optical Coherence Tomography Systems by Integrating a Custom Endoscope.
    Welge WA; Barton JK
    PLoS One; 2015; 10(9):e0139396. PubMed ID: 26418811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serial three-dimensional optical coherence tomography assessment of strut coverage and intraluminal structures after drug-eluting stent implantation.
    Maeda T; Okamura T; Yamada J; Nao T; Tateishi H; Yoshimura M; Oda T; Shiraishi K; Nakashima T; Nakamura T; Miura T; Yano M
    Cardiovasc Interv Ther; 2014 Jan; 29(1):31-9. PubMed ID: 24057448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography.
    Herz PR; Chen Y; Aguirre AD; Schneider K; Hsiung P; Fujimoto JG; Madden K; Schmitt J; Goodnow J; Petersen C
    Opt Lett; 2004 Oct; 29(19):2261-3. PubMed ID: 15524374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the intimal response to a protein-modified stent in a tissue-engineered blood vessel mimic.
    Cardinal KO; Williams SK
    Tissue Eng Part A; 2009 Dec; 15(12):3869-76. PubMed ID: 19563259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between optical coherence tomography and intravascular ultrasound in detecting neointimal healing patterns after stent implantation.
    Kochman J; Pietrasik A; Rdzanak A; Jąkała J; Zasada W; Scibisz A; Kołtowski L; Proniewska K; Pociask E; Legutko J
    Kardiol Pol; 2014; 72(6):534-40. PubMed ID: 24293141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grading of Regional Apposition after Flow-Diverter Treatment (GRAFT): a comparative evaluation of VasoCT and intravascular OCT.
    van der Marel K; Gounis MJ; Weaver JP; de Korte AM; King RM; Arends JM; Brooks OW; Wakhloo AK; Puri AS
    J Neurointerv Surg; 2016 Aug; 8(8):847-52. PubMed ID: 26220411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nondestructive Monitoring of Degradable Scaffold-Based Tissue-Engineered Blood Vessel Development Using Optical Coherence Tomography.
    Chen W; Liu S; Yang J; Wu Y; Ma W; Lin Z
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30346387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro remodeling and structural characterization of degradable polymer scaffold-based tissue-engineered vascular grafts using optical coherence tomography.
    Chen W; Yang J; Liao W; Zhou J; Zheng J; Wu Y; Li D; Lin Z
    Cell Tissue Res; 2017 Dec; 370(3):417-426. PubMed ID: 28887711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ex vivo optical coherence tomography imaging of collector channels with a scanning endoscopic probe.
    Ren J; Gille HK; Wu J; Yang C
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(7):3921-5. PubMed ID: 21357387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary observations using optical coherence tomography to assess neointimal coverage of a metal stent in a porcine model.
    Mills JS; N'diaye CS; Yow E; Urtz M; Povsic TJ; Greenfield JC; Phillips HR
    Cardiovasc Revasc Med; 2009; 10(4):229-35. PubMed ID: 19815170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.