These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1747780)

  • 1. Improving signal peptide prediction accuracy by simulated neural network.
    Ladunga I; Czakó F; Csabai I; Geszti T
    Comput Appl Biosci; 1991 Oct; 7(4):485-7. PubMed ID: 1747780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of signal peptides in protein sequences by neural networks.
    Plewczynski D; Slabinski L; Ginalski K; Rychlewski L
    Acta Biochim Pol; 2008; 55(2):261-7. PubMed ID: 18506221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.
    Nielsen H; Engelbrecht J; Brunak S; von Heijne G
    Int J Neural Syst; 1997; 8(5-6):581-99. PubMed ID: 10065837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved prediction of signal peptides: SignalP 3.0.
    Bendtsen JD; Nielsen H; von Heijne G; Brunak S
    J Mol Biol; 2004 Jul; 340(4):783-95. PubMed ID: 15223320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal peptide discrimination and cleavage site identification using SVM and NN.
    Kazemian HB; Yusuf SA; White K
    Comput Biol Med; 2014 Feb; 45():98-110. PubMed ID: 24480169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of signal peptides and signal anchors by a hidden Markov model.
    Nielsen H; Krogh A
    Proc Int Conf Intell Syst Mol Biol; 1998; 6():122-30. PubMed ID: 9783217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extensive feature detection of N-terminal protein sorting signals.
    Bannai H; Tamada Y; Maruyama O; Nakai K; Miyano S
    Bioinformatics; 2002 Feb; 18(2):298-305. PubMed ID: 11847077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Computer program recognition of a cDNA sequence specifying signal peptides].
    Arrigo P; Giuliano F; Scalia F; Bisio S; Tagliati M; Damiani G
    Boll Soc Ital Biol Sper; 1991; 67(10-11):923-9. PubMed ID: 1821133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rational design of amino acid sequences by artificial neural networks and simulated molecular evolution: de novo design of an idealized leader peptidase cleavage site.
    Schneider G; Wrede P
    Biophys J; 1994 Feb; 66(2 Pt 1):335-44. PubMed ID: 8161687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting and sorting targeting peptides with neural networks and support vector machines.
    Hawkins J; Bodén M
    J Bioinform Comput Biol; 2006 Feb; 4(1):1-18. PubMed ID: 16568539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning approaches for the prediction of signal peptides and other protein sorting signals.
    Nielsen H; Brunak S; von Heijne G
    Protein Eng; 1999 Jan; 12(1):3-9. PubMed ID: 10065704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis.
    Pedersen AG; Nielsen H
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():226-33. PubMed ID: 9322041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of artificial neural filters for pattern recognition in protein sequences.
    Schneider G; Wrede P
    J Mol Evol; 1993 Jun; 36(6):586-95. PubMed ID: 8350352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SignalP 5.0 improves signal peptide predictions using deep neural networks.
    Almagro Armenteros JJ; Tsirigos KD; Sønderby CK; Petersen TN; Winther O; Brunak S; von Heijne G; Nielsen H
    Nat Biotechnol; 2019 Apr; 37(4):420-423. PubMed ID: 30778233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of cleavage-site patterns in protein precursor sequences with a perceptron-type neural network.
    Schneider G; Röhlk S; Wrede P
    Biochem Biophys Res Commun; 1993 Jul; 194(2):951-9. PubMed ID: 8343174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.
    Nielsen H; Engelbrecht J; Brunak S; von Heijne G
    Protein Eng; 1997 Jan; 10(1):1-6. PubMed ID: 9051728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide design aided by neural networks: biological activity of artificial signal peptidase I cleavage sites.
    Wrede P; Landt O; Klages S; Fatemi A; Hahn U; Schneider G
    Biochemistry; 1998 Mar; 37(11):3588-93. PubMed ID: 9530285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of neighboring sequence environment in predicting cleavage sites of signal peptides.
    Li Y; Wen Z; Zhou C; Tan F; Li M
    Peptides; 2008 Sep; 29(9):1498-504. PubMed ID: 18635288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of N-terminal protein sorting signals.
    Claros MG; Brunak S; von Heijne G
    Curr Opin Struct Biol; 1997 Jun; 7(3):394-8. PubMed ID: 9204282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive encoding neural networks for the recognition of human signal peptide cleavage sites.
    Jagla B; Schuchhardt J
    Bioinformatics; 2000 Mar; 16(3):245-50. PubMed ID: 10869017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.