BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 17477804)

  • 1. First-generation blood substitutes: what have we learned? Biochemical and physiological perspectives.
    Alayash AI; D'Agnillo F; Buehler PW
    Expert Opin Biol Ther; 2007 May; 7(5):665-75. PubMed ID: 17477804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to evaluate blood substitutes for endothelial cell toxicity.
    Gaucher C; Menu P
    Antioxid Redox Signal; 2008 Jul; 10(7):1153-62. PubMed ID: 18331203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive Biochemical and Biophysical Characterization of Hemoglobin-Based Oxygen Carrier Therapeutics: All HBOCs Are Not Created Equally.
    Meng F; Kassa T; Jana S; Wood F; Zhang X; Jia Y; D'Agnillo F; Alayash AI
    Bioconjug Chem; 2018 May; 29(5):1560-1575. PubMed ID: 29570272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen therapeutics: can we tame haemoglobin?
    Alayash AI
    Nat Rev Drug Discov; 2004 Feb; 3(2):152-9. PubMed ID: 15043006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All hemoglobin-based oxygen carriers are not created equally.
    Buehler PW; Alayash AI
    Biochim Biophys Acta; 2008 Oct; 1784(10):1378-81. PubMed ID: 18206989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific modifications and toxicity of blood substitutes. The case of diaspirin cross-linked hemoglobin.
    D'Agnillo F; Alayash AI
    Adv Drug Deliv Rev; 2000 Feb; 40(3):199-212. PubMed ID: 10837790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific cross-linking of human and bovine hemoglobins differentially alters oxygen binding and redox side reactions producing rhombic heme and heme degradation.
    Nagababu E; Ramasamy S; Rifkind JM; Jia Y; Alayash AI
    Biochemistry; 2002 Jun; 41(23):7407-15. PubMed ID: 12044174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemoglobin-based oxygen carriers: From mechanisms of toxicity and clearance to rational drug design.
    Buehler PW; D'Agnillo F; Schaer DJ
    Trends Mol Med; 2010 Oct; 16(10):447-57. PubMed ID: 20708968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acellular invertebrate hemoglobins as model therapeutic oxygen carriers: unique redox potentials.
    Harrington JP; Kobayashi S; Dorman SC; Zito SL; Hirsch RE
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(1):53-67. PubMed ID: 17364471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular controls of the oxygenation and redox reactions of hemoglobin.
    Bonaventura C; Henkens R; Alayash AI; Banerjee S; Crumbliss AL
    Antioxid Redox Signal; 2013 Jun; 18(17):2298-313. PubMed ID: 23198874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers.
    Jansman MMT; Hosta-Rigau L
    Adv Colloid Interface Sci; 2018 Oct; 260():65-84. PubMed ID: 30177214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical aspects of the reaction of hemoglobin and NO: implications for Hb-based blood substitutes.
    Patel RP
    Free Radic Biol Med; 2000 May; 28(10):1518-25. PubMed ID: 10927176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of Toxicity and Modulation of Hemoglobin-based Oxygen Carriers.
    Alayash AI
    Shock; 2019 Oct; 52(1S Suppl 1):41-49. PubMed ID: 29112106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemoglobin and free radicals: implications for the development of a safe blood substitute.
    Alayash AI; Cashon RE
    Mol Med Today; 1995 Jun; 1(3):122-7. PubMed ID: 9415147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the oxidative reactivity of recombinant fetal and adult human hemoglobin: implications for the design of hemoglobin-based oxygen carriers.
    Simons M; Gretton S; Silkstone GGA; Rajagopal BS; Allen-Baume V; Syrett N; Shaik T; Leiva-Eriksson N; Ronda L; Mozzarelli A; Strader MB; Alayash AI; Reeder BJ; Cooper CE
    Biosci Rep; 2018 Aug; 38(4):. PubMed ID: 29802155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of recombinant octameric hemoglobin with endothelial cells.
    Gaucher C; Domingues-Hamdi É; Prin-Mathieu C; Menu P; Baudin-Creuza V
    C R Biol; 2015 Feb; 338(2):95-102. PubMed ID: 25543885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering tyrosine residues into hemoglobin enhances heme reduction, decreases oxidative stress and increases vascular retention of a hemoglobin based blood substitute.
    Cooper CE; Silkstone GGA; Simons M; Rajagopal B; Syrett N; Shaik T; Gretton S; Welbourn E; Bülow L; Eriksson NL; Ronda L; Mozzarelli A; Eke A; Mathe D; Reeder BJ
    Free Radic Biol Med; 2019 Apr; 134():106-118. PubMed ID: 30594736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferrous hemoglobin and hemoglobin-based oxygen carriers acting as a peroxidase can inhibit oxidative damage to endothelial cells caused by hydrogen peroxide.
    Huo S; Lei X; He D; Zhang H; Yang Z; Mu W; Fang K; Xue D; Li H; Li X; Jia N; Zhu H; Chen C; Yan K
    Artif Organs; 2021 Oct; 45(10):1229-1239. PubMed ID: 34101875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Challenges in the Development of Acellular Hemoglobin Oxygen Carriers by Protein Engineering.
    Benitez Cardenas AS; Samuel PP; Olson JS
    Shock; 2019 Oct; 52(1S Suppl 1):28-40. PubMed ID: 29112633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of recombinant hemoglobins for use in transfusion fluids.
    Fronticelli C; Koehler RC
    Crit Care Clin; 2009 Apr; 25(2):357-71, Table of Contents. PubMed ID: 19341913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.