These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1747782)

  • 1. A new method for finding long consensus patterns in nucleic acid sequences.
    Taylor P; Rosenberg P; Samsonova MG
    Comput Appl Biosci; 1991 Oct; 7(4):495-500. PubMed ID: 1747782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rigorous pattern-recognition methods for DNA sequences. Analysis of promoter sequences from Escherichia coli.
    Galas DJ; Eggert M; Waterman MS
    J Mol Biol; 1985 Nov; 186(1):117-28. PubMed ID: 3908689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A probabilistic approach to consensus multiple alignment.
    Lazareva-Ulitsky B; Haussler D
    Pac Symp Biocomput; 1999; ():150-61. PubMed ID: 10380193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer tool FUNSITE for analysis of eukaryotic regulatory genomic sequences.
    Kel AE; Kondrakhin YV; Kolpakov PhA ; Kel OV; Romashenko AG; Wingender E; Milanesi L; Kolchanov NA
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():197-205. PubMed ID: 7584437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for promoter search enhanced by function-specific subgrouping of promoters--developed and tested on E.coli system.
    Rozkot F; Sázelová P; Pivec L
    Nucleic Acids Res; 1989 Jun; 17(12):4799-815. PubMed ID: 2664710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expectation maximization algorithm for identifying protein-binding sites with variable lengths from unaligned DNA fragments.
    Cardon LR; Stormo GD
    J Mol Biol; 1992 Jan; 223(1):159-70. PubMed ID: 1731067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and analysis of a yeast genomic DNA sequence capable of directing gene transcription in Escherichia coli as well as in yeast.
    Kwak JW; Kim J; Yoo OJ; Han MH
    Gene; 1988 Apr; 64(1):165-72. PubMed ID: 2840347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using CLUSTAL for multiple sequence alignments.
    Higgins DG; Thompson JD; Gibson TJ
    Methods Enzymol; 1996; 266():383-402. PubMed ID: 8743695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microcomputer program for the identification of tRNA genes.
    Paolella G; Russo T
    Comput Appl Biosci; 1985 Sep; 1(3):149-51. PubMed ID: 3880339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consensus patterns in DNA.
    Stormo GD
    Methods Enzymol; 1990; 183():211-21. PubMed ID: 2179676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining the consensus sequences of E.coli promoter elements by random selection.
    Oliphant AR; Struhl K
    Nucleic Acids Res; 1988 Aug; 16(15):7673-83. PubMed ID: 3045761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of consensus patterns in unaligned DNA sequences known to be functionally related.
    Hertz GZ; Hartzell GW; Stormo GD
    Comput Appl Biosci; 1990 Apr; 6(2):81-92. PubMed ID: 2193692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Random Screen Using a Novel Reporter Assay System Reveals a Set of Sequences That Are Preferred as the TATA or TATA-Like Elements in the CYC1 Promoter of Saccharomyces cerevisiae.
    Watanabe K; Yabe M; Kasahara K; Kokubo T
    PLoS One; 2015; 10(6):e0129357. PubMed ID: 26046838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for discovering novel motifs in nucleic acid sequences.
    Staden R
    Comput Appl Biosci; 1989 Oct; 5(4):293-8. PubMed ID: 2684350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discriminant analysis of promoter regions in Escherichia coli sequences.
    Nakata K; Kanehisa M; Maizel JV
    Comput Appl Biosci; 1988 Aug; 4(3):367-71. PubMed ID: 3046714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory pattern identification in nucleic acid sequences.
    Sadler JR; Waterman MS; Smith TF
    Nucleic Acids Res; 1983 Apr; 11(7):2221-31. PubMed ID: 6340068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consensus symmetry pattern in E. coli promoter sequences.
    Pivec L; Rozkot F; Sázelová P; Vítek A
    Folia Biol (Praha); 1985; 31(3):213-34. PubMed ID: 3894062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intron within the large rRNA gene of N. crassa mitochondria: a long open reading frame and a consensus sequence possibly important in splicing.
    Burke JM; RajBhandary UL
    Cell; 1982 Dec; 31(3 Pt 2):509-20. PubMed ID: 6218884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences.
    Hertz GZ; Stormo GD
    Bioinformatics; 1999; 15(7-8):563-77. PubMed ID: 10487864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.