These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17478425)

  • 41. The extracytoplasmic stress factor, sigmaE, is required to maintain cell envelope integrity in Escherichia coli.
    Hayden JD; Ades SE
    PLoS One; 2008 Feb; 3(2):e1573. PubMed ID: 18253509
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Control of glucose metabolism by enzyme IIGlc of the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli.
    Ruyter GJ; Postma PW; van Dam K
    J Bacteriol; 1991 Oct; 173(19):6184-91. PubMed ID: 1917852
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system.
    Cvitkovitch DG; Boyd DA; Thevenot T; Hamilton IR
    J Bacteriol; 1995 May; 177(9):2251-8. PubMed ID: 7730250
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein:Protein interactions in the cytoplasmic membrane apparently influencing sugar transport and phosphorylation activities of the e. coli phosphotransferase system.
    Aboulwafa M; Zhang Z; Saier MH
    PLoS One; 2019; 14(11):e0219332. PubMed ID: 31751341
    [TBL] [Abstract][Full Text] [Related]  

  • 45. sigma54-dependent transcription of the Pseudomonas putida xylS operon is influenced by the IIANtr protein of the phosphotransferase system in Escherichia coli.
    Du Y; Holtel A; Reizer J; Saier MH
    Res Microbiol; 1996; 147(3):129-32. PubMed ID: 8761731
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transcription regulators controlled by interaction with enzyme IIB components of the phosphoenolpyruvate: sugar phosphotransferase system.
    Joyet P; Bouraoui H; Aké FM; Derkaoui M; Zébré AC; Cao TN; Ventroux M; Nessler S; Noirot-Gros MF; Deutscher J; Milohanic E
    Biochim Biophys Acta; 2013 Jul; 1834(7):1415-24. PubMed ID: 23318733
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inactivation of the ptsI gene encoding enzyme I of the sugar phosphotransferase system of Streptococcus salivarius: effects on growth and urease expression.
    Weaver CA; Chen YM; Burne RA
    Microbiology (Reading); 2000 May; 146 ( Pt 5)():1179-1185. PubMed ID: 10832646
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Legionella pneumophila Incomplete Phosphotransferase System Is Required for Optimal Intracellular Growth and Maximal Expression of PmrA-Regulated Effectors.
    Speiser Y; Zusman T; Pasechnek A; Segal G
    Infect Immun; 2017 Jun; 85(6):. PubMed ID: 28373357
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Requirements for the phosphorylation of the Escherichia coli EIIANtr protein in vivo.
    Zimmer B; Hillmann A; Görke B
    FEMS Microbiol Lett; 2008 Sep; 286(1):96-102. PubMed ID: 18625021
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc.
    Hogema BM; Arents JC; Bader R; Eijkemans K; Yoshida H; Takahashi H; Aiba H; Postma PW
    Mol Microbiol; 1998 Nov; 30(3):487-98. PubMed ID: 9822815
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of glutamate dehydrogenase expression in Pseudomonas putida results from its direct repression by NtrC under nitrogen-limiting conditions.
    Hervás AB; Canosa I; Santero E
    Mol Microbiol; 2010 Oct; 78(2):305-19. PubMed ID: 20735780
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation.
    Ludwig H; Rebhan N; Blencke HM; Merzbacher M; Stülke J
    Mol Microbiol; 2002 Jul; 45(2):543-53. PubMed ID: 12123463
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System.
    Jeckelmann JM; Erni B
    Subcell Biochem; 2019; 92():223-274. PubMed ID: 31214989
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Metabolic Widget Adjusts the Phosphoenolpyruvate-Dependent Fructose Influx in
    Chavarría M; Goñi-Moreno Á; de Lorenzo V; Nikel PI
    mSystems; 2016; 1(6):. PubMed ID: 27933319
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of replacing the general energy-coupling proteins of the PEP:sugar phosphotransferase system of Salmonella typhimurium with their fructose-inducible counterparts on utilization of the PTS sugar glucitol.
    Sutrina SL; Alleyne L; Hoyte K; Blenman M
    Microbiology (Reading); 2002 Dec; 148(Pt 12):3857-3864. PubMed ID: 12480889
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The presence of two forms of the phosphocarrier protein HPr of the phosphoenolpyruvate:sugar phosphotransferase system in streptococci.
    Robitaille D; Gauthier L; Vadeboncoeur C
    Biochimie; 1991 May; 73(5):573-81. PubMed ID: 1764502
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Replacement of isoleucine-47 by threonine in the HPr protein of Streptococcus salivarius abrogates the preferential metabolism of glucose and fructose over lactose and melibiose but does not prevent the phosphorylation of HPr on serine-46.
    Gauthier M; Brochu D; Eltis LD; Thomas S; Vadeboncoeur C
    Mol Microbiol; 1997 Aug; 25(4):695-705. PubMed ID: 9379899
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon.
    Stülke J; Martin-Verstraete I; Charrier V; Klier A; Deutscher J; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6928-36. PubMed ID: 7592487
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum.
    Ikeda M; Mizuno Y; Awane S; Hayashi M; Mitsuhashi S; Takeno S
    Appl Microbiol Biotechnol; 2011 May; 90(4):1443-51. PubMed ID: 21452034
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-Ser-HPr and its possible regulatory function?
    Deutscher J; Kessler U; Alpert CA; Hengstenberg W
    Biochemistry; 1984 Sep; 23(19):4455-60. PubMed ID: 21370586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.