These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 17479102)

  • 1. Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans?
    Courtine G; Bunge MB; Fawcett JW; Grossman RG; Kaas JH; Lemon R; Maier I; Martin J; Nudo RJ; Ramon-Cueto A; Rouiller EM; Schnell L; Wannier T; Schwab ME; Edgerton VR
    Nat Med; 2007 May; 13(5):561-6. PubMed ID: 17479102
    [No Abstract]   [Full Text] [Related]  

  • 2. The cat model of spinal injury.
    Rossignol S; Chau C; Giroux N; Brustein E; Bouyer L; Marcoux J; Langlet C; Barthelémy D; Provencher J; Leblond H; Barbeau H; Reader TA
    Prog Brain Res; 2002; 137():151-68. PubMed ID: 12440366
    [No Abstract]   [Full Text] [Related]  

  • 3. Are rodents an appropriate pre-clinical model for treating spinal cord injury? Examples from the respiratory system.
    Kastner A; Gauthier P
    Exp Neurol; 2008 Oct; 213(2):249-56. PubMed ID: 18675802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consequences of spinal cord lesions upon motor function, with special reference to locomotor activity.
    Eidelberg E
    Prog Neurobiol; 1981; 17(3):185-202. PubMed ID: 6798636
    [No Abstract]   [Full Text] [Related]  

  • 5. Propriospinal neurons involved in the control of locomotion: potential targets for repair strategies?
    Jordan LM; Schmidt BJ
    Prog Brain Res; 2002; 137():125-39. PubMed ID: 12440364
    [No Abstract]   [Full Text] [Related]  

  • 6. Animal models of neurologic disorders: a nonhuman primate model of spinal cord injury.
    Nout YS; Rosenzweig ES; Brock JH; Strand SC; Moseanko R; Hawbecker S; Zdunowski S; Nielson JL; Roy RR; Courtine G; Ferguson AR; Edgerton VR; Beattie MS; Bresnahan JC; Tuszynski MH
    Neurotherapeutics; 2012 Apr; 9(2):380-92. PubMed ID: 22427157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensorimotor behaviour following incomplete cervical spinal cord injury in the rat.
    Webb AA; Muir GD
    Behav Brain Res; 2005 Dec; 165(2):147-59. PubMed ID: 16157393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal cord injury models in non human primates: are lesions created by sharp instruments relevant to human injuries?
    Sledge J; Graham WA; Westmoreland S; Sejdic E; Miller A; Hoggatt A; Nesathurai S
    Med Hypotheses; 2013 Oct; 81(4):747-8. PubMed ID: 23948598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chapter 16--spinal plasticity in the recovery of locomotion.
    Rossignol S; Frigon A; Barrière G; Martinez M; Barthélemy D; Bouyer L; Bélanger M; Provencher J; Chau C; Brustein E; Barbeau H; Giroux N; Marcoux J; Langlet C; Alluin O
    Prog Brain Res; 2011; 188():229-41. PubMed ID: 21333814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats.
    You SW; Chen BY; Liu HL; Lang B; Xia JL; Jiao XY; Ju G
    Restor Neurol Neurosci; 2003; 21(1-2):39-45. PubMed ID: 12808201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locomotor recovery after spinal cord hemisection/contusion injures in bonnet monkeys: footprint testing--a minireview.
    Rangasamy SB
    Synapse; 2013 Jul; 67(7):427-53. PubMed ID: 23401170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input.
    Edgerton VR; Roy RR; Hodgson JA; Prober RJ; de Guzman CP; de Leon R
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S119-28. PubMed ID: 1588602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epidural spinal cord stimulation plus quipazine administration enable stepping in complete spinal adult rats.
    Gerasimenko YP; Ichiyama RM; Lavrov IA; Courtine G; Cai L; Zhong H; Roy RR; Edgerton VR
    J Neurophysiol; 2007 Nov; 98(5):2525-36. PubMed ID: 17855582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spinal locomotor CPG: a target after spinal cord injury.
    Grillner S
    Prog Brain Res; 2002; 137():97-108. PubMed ID: 12440362
    [No Abstract]   [Full Text] [Related]  

  • 15. Rodent, large animal and non-human primate models of spinal cord injury.
    Nardone R; Florea C; Höller Y; Brigo F; Versace V; Lochner P; Golaszewski S; Trinka E
    Zoology (Jena); 2017 Aug; 123():101-114. PubMed ID: 28720322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of the treatment and pathophysiology of acute spinal cord injury in primates.
    Tator CH; Deecke L
    Paraplegia; 1973 Feb; 10(4):344-5. PubMed ID: 4633213
    [No Abstract]   [Full Text] [Related]  

  • 17. Chitosan channels containing spinal cord-derived stem/progenitor cells for repair of subacute spinal cord injury in the rat.
    Bozkurt G; Mothe AJ; Zahir T; Kim H; Shoichet MS; Tator CH
    Neurosurgery; 2010 Dec; 67(6):1733-44. PubMed ID: 21107205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transection in the rat.
    López-Vales R; Forés J; Navarro X; Verdú E
    Glia; 2007 Feb; 55(3):303-11. PubMed ID: 17096411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone marrow mesenchymal stromal cells and olfactory ensheathing cells transplantation after spinal cord injury--a morphological and functional comparison in rats.
    Torres-Espín A; Redondo-Castro E; Hernández J; Navarro X
    Eur J Neurosci; 2014 May; 39(10):1704-17. PubMed ID: 24635194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods to assess the development and recovery of locomotor function after spinal cord injury in rats.
    Kunkel-Bagden E; Dai HN; Bregman BS
    Exp Neurol; 1993 Feb; 119(2):153-64. PubMed ID: 8432357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.