These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 17479102)

  • 21. Spinal cord injury: overview of experimental approaches used to restore locomotor activity.
    Fakhoury M
    Rev Neurosci; 2015; 26(4):397-405. PubMed ID: 25870961
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spinal circuits for motor learning.
    Brownstone RM; Bui TV; Stifani N
    Curr Opin Neurobiol; 2015 Aug; 33():166-73. PubMed ID: 25978563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spinal cord injury: there is nothing permanent except change (Heraclitus, 540-480 BC).
    Nistri A; Saccavini M
    Brain Res Bull; 2009 Jan; 78(1):2-3. PubMed ID: 18929626
    [No Abstract]   [Full Text] [Related]  

  • 24. One day of motor training with amphetamine impairs motor recovery following spinal cord injury.
    Wong JK; Steward O
    Exp Neurol; 2012 Feb; 233(2):693-707. PubMed ID: 22078754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transplantation of human neural stem cells for spinal cord injury in primates.
    Iwanami A; Kaneko S; Nakamura M; Kanemura Y; Mori H; Kobayashi S; Yamasaki M; Momoshima S; Ishii H; Ando K; Tanioka Y; Tamaoki N; Nomura T; Toyama Y; Okano H
    J Neurosci Res; 2005 Apr; 80(2):182-90. PubMed ID: 15772979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The blood-spinal cord barrier: morphology and clinical implications.
    Bartanusz V; Jezova D; Alajajian B; Digicaylioglu M
    Ann Neurol; 2011 Aug; 70(2):194-206. PubMed ID: 21674586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New therapy for spinal cord injury shows positive results in rodent model.
    Regen Med; 2011 Mar; 6(2):142-3. PubMed ID: 21513086
    [No Abstract]   [Full Text] [Related]  

  • 28. [Non-invasive transcutaneous spinal cord stimulation facilitates locomotor activity in decerebrated and spinal cats].
    Musienko PE; Bogacheva IN; Savochin AA; Kilimnik VA; Gorskiĭ OV; Nikitin OA; Gerasimenko IaP
    Ross Fiziol Zh Im I M Sechenova; 2013 Aug; 99(8):917-27. PubMed ID: 25470942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The secretome of apoptotic human peripheral blood mononuclear cells attenuates secondary damage following spinal cord injury in rats.
    Haider T; Höftberger R; Rüger B; Mildner M; Blumer R; Mitterbauer A; Buchacher T; Sherif C; Altmann P; Redl H; Gabriel C; Gyöngyösi M; Fischer MB; Lubec G; Ankersmit HJ
    Exp Neurol; 2015 May; 267():230-42. PubMed ID: 25797576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Is the recovery of stepping following spinal cord injury mediated by modifying existing neural pathways or by generating new pathways? A perspective.
    de Leon RD; Roy RR; Edgerton VR
    Phys Ther; 2001 Dec; 81(12):1904-11. PubMed ID: 11736625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protective effect of liposome-mediated glial cell line-derived neurotrophic factor gene transfer in vivo on motoneurons following spinal cord injury in rats.
    Lu KW; Chen ZY; Hou TS
    Chin J Traumatol; 2004 Oct; 7(5):275-9. PubMed ID: 15363220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-assisted treadmill training does not improve motor recovery and body composition in spinal cord-transected mice.
    Ung RV; Lapointe NP; Rouleau P; Guertin PA
    Spinal Cord; 2010 Oct; 48(10):750-5. PubMed ID: 20177410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Delayed granulocyte colony-stimulating factor treatment promotes functional recovery in rats with severe contusive spinal cord injury.
    Lee JS; Yang CC; Kuo YM; Sze CI; Hsu JY; Huang YH; Tzeng SF; Tsai CL; Chen HH; Jou IM
    Spine (Phila Pa 1976); 2012 Jan; 37(1):10-7. PubMed ID: 22024901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrophysiological investigations of neurotransplant-mediated recovery after spinal cord injury.
    Skinner RD; Houle JD; Reese NB; Garcia-Rill EE
    Adv Neurol; 1997; 72():277-90. PubMed ID: 8993705
    [No Abstract]   [Full Text] [Related]  

  • 36. Effects of epidural hypothermic saline infusion on locomotor outcome and tissue preservation after moderate thoracic spinal cord contusion in rats.
    Casas CE; Herrera LP; Prusmack C; Ruenes G; Marcillo A; Guest JD
    J Neurosurg Spine; 2005 Mar; 2(3):308-18. PubMed ID: 15796356
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting ependymal stem cells in vivo as a non-invasive therapy for spinal cord injury.
    Barreiro-Iglesias A
    Dis Model Mech; 2010; 3(11-12):667-8. PubMed ID: 20959637
    [No Abstract]   [Full Text] [Related]  

  • 38. Body cooling ameliorating spinal cord injury may be neurogenesis-, anti-inflammation- and angiogenesis-associated in rats.
    Kao CH; Chio CC; Lin MT; Yeh CH
    J Trauma; 2011 Apr; 70(4):885-93. PubMed ID: 20693909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recovery of cortical control over locomotion after spinal cord injury.
    Tempel Z; Monaco EA; Friedlander RM
    Neurosurgery; 2012 Oct; 71(4):N19-20. PubMed ID: 22989970
    [No Abstract]   [Full Text] [Related]  

  • 40. A new age for rehabilitation.
    Edgerton VR; Roy RR
    Eur J Phys Rehabil Med; 2012 Mar; 48(1):99-109. PubMed ID: 22407010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.