These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 17479258)
1. Controlling the sucrose concentration increases Coenzyme Q10 production in fed-batch culture of Agrobacterium tumefaciens. Ha SJ; Kim SY; Seo JH; Moon HJ; Lee KM; Lee JK Appl Microbiol Biotechnol; 2007 Aug; 76(1):109-16. PubMed ID: 17479258 [TBL] [Abstract][Full Text] [Related]
2. Optimization of culture conditions and scale-up to pilot and plant scales for coenzyme Q10 production by Agrobacterium tumefaciens. Ha SJ; Kim SY; Seo JH; Oh DK; Lee JK Appl Microbiol Biotechnol; 2007 Apr; 74(5):974-80. PubMed ID: 17124579 [TBL] [Abstract][Full Text] [Related]
3. Ca2+ increases the specific coenzyme Q10 content in Agrobacterium tumefaciens. Ha SJ; Kim SY; Seo JH; Jeya M; Zhang YW; Ramu T; Kim IW; Lee JK Bioprocess Biosyst Eng; 2009 Aug; 32(5):697-700. PubMed ID: 19381690 [TBL] [Abstract][Full Text] [Related]
4. [Effects of nutrient conditions and fed-batch culture on CoQ10 production by Rhizobium radiobacter WSH2601]. Zu-Fan W; Du GC; Chen J Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):212-6. PubMed ID: 15966324 [TBL] [Abstract][Full Text] [Related]
5. Coenzyme Q10 production by Rhodobacter sphaeroides in stirred tank and in airlift bioreactor. Yen HW; Shih TY Bioprocess Biosyst Eng; 2009 Oct; 32(6):711-6. PubMed ID: 19153771 [TBL] [Abstract][Full Text] [Related]
6. Batch and fed-batch production of coenzyme Q10 in recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans. Park YC; Kim SJ; Choi JH; Lee WH; Park KM; Kawamukai M; Ryu YW; Seo JH Appl Microbiol Biotechnol; 2005 Apr; 67(2):192-6. PubMed ID: 15459799 [TBL] [Abstract][Full Text] [Related]
7. Synergistic effects of chromosomal ispB deletion and dxs overexpression on coenzyme Q(10) production in recombinant Escherichia coli expressing Agrobacterium tumefaciens dps gene. Choi JH; Ryu YW; Park YC; Seo JH J Biotechnol; 2009 Oct; 144(1):64-9. PubMed ID: 19409940 [TBL] [Abstract][Full Text] [Related]
8. Current state of coenzyme Q(10) production and its applications. Jeya M; Moon HJ; Lee JL; Kim IW; Lee JK Appl Microbiol Biotechnol; 2010 Feb; 85(6):1653-63. PubMed ID: 20012276 [TBL] [Abstract][Full Text] [Related]
9. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Shi XM; Jiang Y; Chen F Biotechnol Prog; 2002; 18(4):723-7. PubMed ID: 12153304 [TBL] [Abstract][Full Text] [Related]
10. Optimization of culture conditions and scale-up to pilot and plant scales for vancomycin production by Amycolatopsis orientalis. Jung HM; Kim SY; Moon HJ; Oh DK; Lee JK Appl Microbiol Biotechnol; 2007 Dec; 77(4):789-95. PubMed ID: 17938907 [TBL] [Abstract][Full Text] [Related]
11. Effects of cell lysis treatments on the yield of coenzyme Q10 following Agrobacterium tumefaciens fermentation. Yuting Tian ; Tianli Yue ; Jinjin Pei ; Yahong Yuan ; Juhai Li ; Martin Lo Y Food Sci Technol Int; 2010 Apr; 16(2):195-203. PubMed ID: 21339135 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of 5-aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system. Fu W; Lin J; Cen P Bioresour Technol; 2008 Jul; 99(11):4864-70. PubMed ID: 17993272 [TBL] [Abstract][Full Text] [Related]
13. Effect of limited oxygen supply on coenzyme Q(10) production and its relation to limited electron transfer and oxidative stress in Rhizobium radiobacter T6102. Seo MJ; Kim SO J Microbiol Biotechnol; 2010 Feb; 20(2):346-9. PubMed ID: 20208439 [TBL] [Abstract][Full Text] [Related]
14. Fed-batch fermentation of Tuber melanosporum for the hyperproduction of mycelia and bioactive Tuber polysaccharides. Liu QN; Liu RS; Wang YH; Mi ZY; Li DS; Zhong JJ; Tang YJ Bioresour Technol; 2009 Jul; 100(14):3644-9. PubMed ID: 19303769 [TBL] [Abstract][Full Text] [Related]
15. [Effects of culture conditions on coenzyme Q10 production by Rhizobium radiobacter by metabolic flux analysis]. Wu ZF; Du GC; Chen J Wei Sheng Wu Xue Bao; 2005 Apr; 45(2):231-5. PubMed ID: 15989267 [TBL] [Abstract][Full Text] [Related]
16. Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation. Kim HS; Jeon JW; Kim BH; Ahn CY; Oh HM; Yoon BD Appl Microbiol Biotechnol; 2006 Apr; 70(4):391-6. PubMed ID: 16133323 [TBL] [Abstract][Full Text] [Related]
18. High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. Tashiro Y; Takeda K; Kobayashi G; Sonomoto K; Ishizaki A; Yoshino S J Biosci Bioeng; 2004; 98(4):263-8. PubMed ID: 16233703 [TBL] [Abstract][Full Text] [Related]
19. Enhanced hyaluronic acid production by a two-stage culture strategy based on the modeling of batch and fed-batch cultivation of Streptococcus zooepidemicus. Liu L; Du G; Chen J; Wang M; Sun J Bioresour Technol; 2008 Nov; 99(17):8532-6. PubMed ID: 18397825 [TBL] [Abstract][Full Text] [Related]
20. Variable volume fed-batch fermentation for nisin production by Lactococcus lactis subsp. lactis W28. Wu Z; Wang L; Jing Y; Li X; Zhao Y Appl Biochem Biotechnol; 2009 Mar; 152(3):372-82. PubMed ID: 18712289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]