BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 17479279)

  • 1. Effects of cooling on human skin and skeletal muscle.
    Yanagisawa O; Homma T; Okuwaki T; Shimao D; Takahashi H
    Eur J Appl Physiol; 2007 Aug; 100(6):737-45. PubMed ID: 17479279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion-weighted magnetic resonance imaging reveals the effects of different cooling temperatures on the diffusion of water molecules and perfusion within human skeletal muscle.
    Yanagisawa O; Fukubayashi T
    Clin Radiol; 2010 Nov; 65(11):874-80. PubMed ID: 20933641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans.
    Wakabayashi H; Nishimura T; Wijayanto T; Watanuki S; Tochihara Y
    Int J Biometeorol; 2017 Jul; 61(7):1261-1267. PubMed ID: 28083707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of skin and core tissue cooling on oxygenation of the vastus lateralis muscle during walking and running.
    Gagnon DD; Peltonen JE; Rintamäki H; Gagnon SS; Herzig KH; Kyröläinen H
    J Sports Sci; 2017 Oct; 35(20):1995-2004. PubMed ID: 27800701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Head and neck cooling decreases tympanic and skin temperature, but significantly increases blood pressure.
    Koehn J; Kollmar R; Cimpianu CL; Kallmünzer B; Moeller S; Schwab S; Hilz MJ
    Stroke; 2012 Aug; 43(8):2142-8. PubMed ID: 22627986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of postexercise cooling on muscle oxygenation and blood volume changes.
    Ihsan M; Watson G; Lipski M; Abbiss CR
    Med Sci Sports Exerc; 2013 May; 45(5):876-82. PubMed ID: 23247707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of cold-water immersion on limb and cutaneous blood flow after exercise.
    Mawhinney C; Jones H; Joo CH; Low DA; Green DJ; Gregson W
    Med Sci Sports Exerc; 2013 Dec; 45(12):2277-85. PubMed ID: 24240118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of local cooling rates on perfusion of sacral skin under externally applied pressure in people with spinal cord injury: an exploratory study.
    Jan YK
    Spinal Cord; 2020 Apr; 58(4):476-483. PubMed ID: 31700147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of Salted Ice Bag Versus Cryocompression on Decreasing Intramuscular and Skin Temperature.
    Ostrowski J; Purchio A; Beck M; Leisinger J
    J Sport Rehabil; 2019 Feb; 28(2):120-125. PubMed ID: 29035620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biometrical characteristics and physiological responses to a local cold exposure of the extremities.
    Savourey G; Sendowski I; Bittel J
    Eur J Appl Physiol Occup Physiol; 1996; 74(1-2):85-90. PubMed ID: 8891505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat transfer to deep tissue: the effect of body fat and heating modality.
    Petrofsky JS; Laymon M
    J Med Eng Technol; 2009; 33(5):337-48. PubMed ID: 19440919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold-water immersion decreases cerebral oxygenation but improves recovery after intermittent-sprint exercise in the heat.
    Minett GM; Duffield R; Billaut F; Cannon J; Portus MR; Marino FE
    Scand J Med Sci Sports; 2014 Aug; 24(4):656-66. PubMed ID: 23458430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of different cooling treatments on water diffusion, microcirculation, and water content within exercised muscles: evaluation by magnetic resonance T2-weighted and diffusion-weighted imaging.
    Yanagisawa O; Takahashi H; Fukubayashi T
    J Sports Sci; 2010 Sep; 28(11):1157-63. PubMed ID: 20845216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cutaneous vasoconstrictor response to whole body skin cooling is altered by time of day.
    Aoki K; Stephens DP; Saad AR; Johnson JM
    J Appl Physiol (1985); 2003 Mar; 94(3):930-4. PubMed ID: 12571128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peripheral vasoconstriction influences thenar oxygen saturation as measured by near-infrared spectroscopy.
    Lima A; van Genderen ME; Klijn E; Bakker J; van Bommel J
    Intensive Care Med; 2012 Apr; 38(4):606-11. PubMed ID: 22349421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of near-infrared spectroscopy in humans.
    Mancini DM; Bolinger L; Li H; Kendrick K; Chance B; Wilson JR
    J Appl Physiol (1985); 1994 Dec; 77(6):2740-7. PubMed ID: 7896615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finger skin cooling on contact with cold materials: an investigation of male and female responses during short-term exposures with a view on hand and finger size.
    Jay O; Havenith G
    Eur J Appl Physiol; 2004 Oct; 93(1-2):1-8. PubMed ID: 15205959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared spectroscopy provides an index of blood flow and vasoconstriction in calf skeletal muscle during lower body negative pressure.
    Hachiya T; Blaber AP; Saito M
    Acta Physiol (Oxf); 2008 Jun; 193(2):117-27. PubMed ID: 18162057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative roles of local and reflex components in cutaneous vasoconstriction during skin cooling in humans.
    Alvarez GE; Zhao K; Kosiba WA; Johnson JM
    J Appl Physiol (1985); 2006 Jun; 100(6):2083-8. PubMed ID: 16484359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examination of Intramuscular and Skin Temperature Decreases Produced by the PowerPlay Intermittent Compression Cryotherapy.
    Ostrowski J; Purchio A; Beck M; Leisinger J; Tucker M; Hurst S
    J Sport Rehabil; 2018 May; 27(3):244-248. PubMed ID: 28422604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.