These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 17480028)

  • 21. Macrophages and Microglia Produce Local Trophic Gradients That Stimulate Axonal Sprouting Toward but Not beyond the Wound Edge.
    Batchelor PE; Porritt MJ; Martinello P; Parish CL; Liberatore GT; Donnan GA; Howells DW
    Mol Cell Neurosci; 2002 Nov; 21(3):436-53. PubMed ID: 12498785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord.
    Prewitt CM; Niesman IR; Kane CJ; Houlé JD
    Exp Neurol; 1997 Dec; 148(2):433-43. PubMed ID: 9417823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accurate synapse regeneration despite ablation of the distal axon segment.
    Mason A; Muller KJ
    Eur J Neurosci; 1996 Jan; 8(1):11-20. PubMed ID: 8713446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toll-like receptor 4 deficiency impairs microglial phagocytosis of degenerating axons.
    Rajbhandari L; Tegenge MA; Shrestha S; Ganesh Kumar N; Malik A; Mithal A; Hosmane S; Venkatesan A
    Glia; 2014 Dec; 62(12):1982-91. PubMed ID: 25042766
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prior collateral sprouting of sensory axons delays recovery of pain sensitivity after subsequent nerve crush.
    Bajrović F; Sketelj J
    Exp Neurol; 1996 Oct; 141(2):207-13. PubMed ID: 8812154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prior collateral sprouting enhances elongation rate of sensory axons regenerating through acellular distal segment of a crushed peripheral nerve.
    Bajrović F; Remskar M; Sketelj J
    J Peripher Nerv Syst; 1999; 4(1):5-12. PubMed ID: 10197060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tinkering with successful synapse regeneration in the leech: adding insult to injury.
    Muller KJ; McGlade-McCulloh E; Mason A
    J Exp Biol; 1987 Sep; 132():207-21. PubMed ID: 3323400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuronal injury in chronic CNS inflammation.
    Zindler E; Zipp F
    Best Pract Res Clin Anaesthesiol; 2010 Dec; 24(4):551-62. PubMed ID: 21619866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of matrix molecules in regeneration of leech CNS.
    Masuda-Nakagawa LM; Wiedemann C
    J Neurobiol; 1992 Jul; 23(5):551-67. PubMed ID: 1279114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuroglial ATP release through innexin channels controls microglial cell movement to a nerve injury.
    Samuels SE; Lipitz JB; Dahl G; Muller KJ
    J Gen Physiol; 2010 Oct; 136(4):425-42. PubMed ID: 20876360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The receptor protein tyrosine phosphatase HmLAR1 is up-regulated in the CNS of the adult medicinal leech following injury and is required for neuronal sprouting and regeneration.
    Sethi J; Zhao B; Cuvillier-Hot V; Boidin-Wichlacz C; Salzet M; Macagno ER; Baker MW
    Mol Cell Neurosci; 2010 Dec; 45(4):430-8. PubMed ID: 20708686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Central nervous system regeneration: from leech to opossum.
    Mladinic M; Muller KJ; Nicholls JG
    J Physiol; 2009 Jun; 587(Pt 12):2775-82. PubMed ID: 19525562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Substrate-dependent interactions of leech microglial cells and neurons in culture.
    Masuda-Nakagawa LM; Walz A; Brodbeck D; Neely MD; Grumbacher-Reinert S
    J Neurobiol; 1994 Jan; 25(1):83-91. PubMed ID: 8113785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ hybridization reveals transient laminin B-chain expression by individual glial and muscle cells in embryonic leech central nervous system.
    Luebke AE; Dickerson IM; Muller KJ
    J Neurobiol; 1995 May; 27(1):1-14. PubMed ID: 7643070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Axonal sprouting and laminin appearance after destruction of glial sheaths.
    Masuda-Nakagawa LM; Muller KJ; Nicholls JG
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):4966-70. PubMed ID: 8506343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ATP and NO dually control migration of microglia to nerve lesions.
    Duan Y; Sahley CL; Muller KJ
    Dev Neurobiol; 2009 Jan; 69(1):60-72. PubMed ID: 19025930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New growth elicited in adult leech mechanosensory neurones by peripheral axon damage.
    Bannatyne BA; Blackshaw SE; McGregor M
    J Exp Biol; 1989 May; 143():419-34. PubMed ID: 2732665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of HmC1q with leech microglial cells: involvement of C1qBP-related molecule in the induction of cell chemotaxis.
    Tahtouh M; Garçon-Bocquet A; Croq F; Vizioli J; Sautière PE; Van Camp C; Salzet M; Nagnan-le Meillour P; Pestel J; Lefebvre C
    J Neuroinflammation; 2012 Feb; 9():37. PubMed ID: 22356764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extracellular matrix molecules in development and regeneration of the leech CNS.
    Masuda-Nakagawa LM; Nicholls JG
    Philos Trans R Soc Lond B Biol Sci; 1991 Mar; 331(1261):323-35. PubMed ID: 1713329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peripheral regeneration and central sprouting of sensory neurone axons in Aplysia californica following nerve injury.
    Steffensen I; Dulin MF; Walters ET; Morris CE
    J Exp Biol; 1995 Oct; 198(Pt 10):2067-78. PubMed ID: 7500002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.