These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 17480058)
1. Oxidation of methionine residues in recombinant human interleukin-1 receptor antagonist: implications of conformational stability on protein oxidation kinetics. Thirumangalathu R; Krishnan S; Bondarenko P; Speed-Ricci M; Randolph TW; Carpenter JF; Brems DN Biochemistry; 2007 May; 46(21):6213-24. PubMed ID: 17480058 [TBL] [Abstract][Full Text] [Related]
2. Comparative oxidation studies of methionine residues reflect a structural effect on chemical kinetics in rhG-CSF. Pan B; Abel J; Ricci MS; Brems DN; Wang DI; Trout BL Biochemistry; 2006 Dec; 45(51):15430-43. PubMed ID: 17176065 [TBL] [Abstract][Full Text] [Related]
3. Free-energy simulations of the oxidation of c-terminal methionines in calmodulin. Jas GS; Kuczera K Proteins; 2002 Aug; 48(2):257-68. PubMed ID: 12112694 [TBL] [Abstract][Full Text] [Related]
4. Physical factors affecting the storage stability of freeze-dried interleukin-1 receptor antagonist: glass transition and protein conformation. Chang BS; Beauvais RM; Dong A; Carpenter JF Arch Biochem Biophys; 1996 Jul; 331(2):249-58. PubMed ID: 8660705 [TBL] [Abstract][Full Text] [Related]
5. Denaturant-dependent conformational changes in a beta-trefoil protein: global and residue-specific aspects of an equilibrium denaturation process. Latypov RF; Liu D; Jacob J; Harvey TS; Bondarenko PV; Kleemann GR; Brems DN; Raibekas AA Biochemistry; 2009 Nov; 48(46):10934-47. PubMed ID: 19839644 [TBL] [Abstract][Full Text] [Related]
6. High-pressure studies of aggregation of recombinant human interleukin-1 receptor antagonist: thermodynamics, kinetics, and application to accelerated formulation studies. Seefeldt MB; Kim YS; Tolley KP; Seely J; Carpenter JF; Randolph TW Protein Sci; 2005 Sep; 14(9):2258-66. PubMed ID: 16081653 [TBL] [Abstract][Full Text] [Related]
7. In vitro methionine oxidation of Escherichia coli-derived human stem cell factor: effects on the molecular structure, biological activity, and dimerization. Hsu YR; Narhi LO; Spahr C; Langley KE; Lu HS Protein Sci; 1996 Jun; 5(6):1165-73. PubMed ID: 8762148 [TBL] [Abstract][Full Text] [Related]
8. Chemical modification and site-directed mutagenesis of methionine residues in recombinant human granulocyte colony-stimulating factor: effect on stability and biological activity. Lu HS; Fausset PR; Narhi LO; Horan T; Shinagawa K; Shimamoto G; Boone TC Arch Biochem Biophys; 1999 Feb; 362(1):1-11. PubMed ID: 9917323 [TBL] [Abstract][Full Text] [Related]
9. A structural and mechanistic study of the oxidation of methionine residues in hPTH(1-34) via experiments and simulations. Chu JW; Yin J; Wang DI; Trout BL Biochemistry; 2004 Nov; 43(44):14139-48. PubMed ID: 15518564 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass spectrometry-based strategy. West GM; Tang L; Fitzgerald MC Anal Chem; 2008 Jun; 80(11):4175-85. PubMed ID: 18457414 [TBL] [Abstract][Full Text] [Related]
11. Oxidation of methionine residues in the prion protein by hydrogen peroxide. Requena JR; Dimitrova MN; Legname G; Teijeira S; Prusiner SB; Levine RL Arch Biochem Biophys; 2004 Dec; 432(2):188-95. PubMed ID: 15542057 [TBL] [Abstract][Full Text] [Related]
12. Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation. Liu D; Ren D; Huang H; Dankberg J; Rosenfeld R; Cocco MJ; Li L; Brems DN; Remmele RL Biochemistry; 2008 May; 47(18):5088-100. PubMed ID: 18407665 [TBL] [Abstract][Full Text] [Related]
13. The use of t-butyl hydroperoxide as a probe for methionine oxidation in proteins. Keck RG Anal Biochem; 1996 Apr; 236(1):56-62. PubMed ID: 8619496 [TBL] [Abstract][Full Text] [Related]
14. Influence of methionine oxidation on the aggregation of recombinant human growth hormone. Mulinacci F; Poirier E; Capelle MA; Gurny R; Arvinte T Eur J Pharm Biopharm; 2013 Sep; 85(1):42-52. PubMed ID: 23958317 [TBL] [Abstract][Full Text] [Related]
15. Comparison of methionine oxidation in thermal stability and chemically stressed samples of a fully human monoclonal antibody. Chumsae C; Gaza-Bulseco G; Sun J; Liu H J Chromatogr B Analyt Technol Biomed Life Sci; 2007 May; 850(1-2):285-94. PubMed ID: 17182291 [TBL] [Abstract][Full Text] [Related]
16. Oxidation of methionine residue at hydrophobic core destabilizes p53 tetrameric structure. Nomura T; Kamada R; Ito I; Chuman Y; Shimohigashi Y; Sakaguchi K Biopolymers; 2009 Jan; 91(1):78-84. PubMed ID: 18781628 [TBL] [Abstract][Full Text] [Related]
17. Specific volume and adiabatic compressibility measurements of native and aggregated recombinant human interleukin-1 receptor antagonist: density differences enable pressure-modulated refolding. Seefeldt MB; Crouch C; Kendrick B; Randolph TW Biotechnol Bioeng; 2007 Oct; 98(2):476-85. PubMed ID: 17335058 [TBL] [Abstract][Full Text] [Related]
18. Oxidation of buried cysteines is slow and an insignificant factor in the structural destabilization of staphylococcal nuclease caused by H2O2 exposure. Kim YH; Stites WE Amino Acids; 2004 Oct; 27(2):175-81. PubMed ID: 15316877 [TBL] [Abstract][Full Text] [Related]
19. Rates of unfolding, rather than refolding, determine thermal stabilities of thermophilic, mesophilic, and psychrotrophic 3-isopropylmalate dehydrogenases. Gráczer E; Varga A; Hajdú I; Melnik B; Szilágyi A; Semisotnov G; Závodszky P; Vas M Biochemistry; 2007 Oct; 46(41):11536-49. PubMed ID: 17887729 [TBL] [Abstract][Full Text] [Related]
20. Stabilization of sulfide radical cations through complexation with the peptide bond: mechanisms relevant to oxidation of proteins containing multiple methionine residues. Bobrowski K; Hug GL; Pogocki D; Marciniak B; Schöneich C J Phys Chem B; 2007 Aug; 111(32):9608-20. PubMed ID: 17658786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]