These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 17481342)

  • 1. Beam-induced damage to thin specimens in an intense electron probe.
    Egerton RF; Wang F; Crozier PA
    Microsc Microanal; 2006 Feb; 12(1):65-71. PubMed ID: 17481342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation damage in the TEM and SEM.
    Egerton RF; Li P; Malac M
    Micron; 2004; 35(6):399-409. PubMed ID: 15120123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The assessment of microscopic charging effects induced by focused electron and ion beam irradiation of dielectrics.
    Stevens-Kalceff MA; Levick KJ
    Microsc Res Tech; 2007 Mar; 70(3):195-204. PubMed ID: 17279517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The formation and utility of sub-angstrom to nanometer-sized electron probes in the aberration-corrected transmission electron microscope at the University of Illinois.
    Wen J; Mabon J; Lei C; Burdin S; Sammann E; Petrov I; Shah AB; Chobpattana V; Zhang J; Ran K; Zuo JM; Mishina S; Aoki T
    Microsc Microanal; 2010 Apr; 16(2):183-93. PubMed ID: 20187990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of transmission electron microscopes to nanometre-sized fabrication by means of electron beam-induced deposition.
    Shimojo M; Mitsuishi K; Tanaka M; Han M; Furuya K
    J Microsc; 2004 Apr; 214(Pt 1):76-9. PubMed ID: 15049871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thin dielectric film thickness determination by advanced transmission electron microscopy.
    Diebold AC; Foran B; Kisielowski C; Muller DA; Pennycook SJ; Principe E; Stemmer S
    Microsc Microanal; 2003 Dec; 9(6):493-508. PubMed ID: 14750984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of (InGa)As/GaAs multilayered materials for TEM by one side non-rotation ion beam thinning.
    Yao JY; Dunlop GL
    J Electron Microsc Tech; 1991 Sep; 19(1):90-8. PubMed ID: 1960573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-resolution STEM in the aberration-corrected JEOL JEM2200FS.
    Klie RF; Johnson C; Zhu Y
    Microsc Microanal; 2008 Feb; 14(1):104-12. PubMed ID: 18171499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods for scanning and transmission electron microscopy of normal and damaged gram-negative bacteria.
    Fuglesang JE; Namork E; Fordan B; Johansen BV
    NIPH Ann; 1980 Dec; 3(2):133-9. PubMed ID: 7012686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific specimen preparation by focused ion beam milling for transmission electron microscopy of metal matrix composites.
    Gasser P; Klotz UE; Khalid FA; Beffort O
    Microsc Microanal; 2004 Apr; 10(2):311-6. PubMed ID: 15306057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging thin films of nanoporous low-k dielectrics: comparison between ultramicrotomy and focused ion beam preparations for transmission electron microscopy.
    Thompson LE; Rice PM; Delenia E; Lee VY; Brock PJ; Magbitang TP; Dubois G; Volksen W; Miller RD; Kim HC
    Microsc Microanal; 2006 Apr; 12(2):156-9. PubMed ID: 17481352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Static-charging mitigation and contamination avoidance by selective carbon coating of TEM samples.
    Höche T; Gerlach JW; Petsch T
    Ultramicroscopy; 2006; 106(11-12):981-5. PubMed ID: 16870340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative HRTEM analysis of FIB prepared specimens.
    Baram M; Kaplan WD
    J Microsc; 2008 Dec; 232(3):395-405. PubMed ID: 19094016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focused ion beam sectioning and lift-out method for copper and resist vias in organic low-k dielectrics.
    Crawford EJ; Gignac L; Barth K; Petrus J; Levine E
    Microsc Microanal; 2002 Dec; 8(6):502-8. PubMed ID: 12533211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focused ion beam preparation of atom probe specimens containing a single crystallographically well-defined grain boundary.
    Pérez-Willard F; Wolde-Giorgis D; Al-Kassab T; López GA; Mittemeijer EJ; Kirchheim R; Gerthsen D
    Micron; 2008; 39(1):45-52. PubMed ID: 17331735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of material properties on TEM specimen preparation of thin films.
    Madsen LD; Weaver L; Jacobsen SN
    Microsc Res Tech; 1997 Mar; 36(5):354-61. PubMed ID: 9140934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemistry with the electron microscope: some highlights in a lifetime's journey.
    Thomas JM
    Microsc Microanal; 2002 Feb; 8(1):40-9. PubMed ID: 12533203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining the stability of folded graphene edges against electron beam induced sputtering with atomic resolution.
    Warner JH; Rümmeli MH; Bachmatiuk A; Büchner B
    Nanotechnology; 2010 Aug; 21(32):325702. PubMed ID: 20639589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct electron imaging in electron microscopy with monolithic active pixel sensors.
    Deptuch G; Besson A; Rehak P; Szelezniak M; Wall J; Winter M; Zhu Y
    Ultramicroscopy; 2007 Aug; 107(8):674-84. PubMed ID: 17346890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress and perspectives for atomic-resolution electron microscopy.
    Smith DJ
    Ultramicroscopy; 2008 Feb; 108(3):159-66. PubMed ID: 18054169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.