These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 17481607)

  • 1. Expression of mdr1 is required for efficient long term regeneration of dystrophic muscle.
    Israeli D; Ziaei S; Gjata B; Benchaouir R; Rameau P; Marais T; Fukada S; Segawa M; Yamamoto H; Gonin P; Danos O; Garcia L
    Exp Cell Res; 2007 Jul; 313(11):2438-50. PubMed ID: 17481607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice.
    Bittner RE; Schöfer C; Weipoltshammer K; Ivanova S; Streubel B; Hauser E; Freilinger M; Höger H; Elbe-Bürger A; Wachtler F
    Anat Embryol (Berl); 1999 May; 199(5):391-6. PubMed ID: 10221450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological scaffold-mediated delivery of myostatin inhibitor promotes a regenerative immune response in an animal model of Duchenne muscular dystrophy.
    Estrellas KM; Chung L; Cheu LA; Sadtler K; Majumdar S; Mula J; Wolf MT; Elisseeff JH; Wagner KR
    J Biol Chem; 2018 Oct; 293(40):15594-15605. PubMed ID: 30139748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related differences in regeneration of dystrophic (mdx) and normal muscle in the mouse.
    Pastoret C; Sebille A
    Muscle Nerve; 1995 Oct; 18(10):1147-54. PubMed ID: 7659109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.
    Church JE; Trieu J; Chee A; Naim T; Gehrig SM; Lamon S; Angelini C; Russell AP; Lynch GS
    Exp Physiol; 2014 Apr; 99(4):675-87. PubMed ID: 24443351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased expression of deltaCaMKII isoforms in skeletal muscle regeneration: Implications in dystrophic muscle disease.
    Abraham ST; Shaw C
    J Cell Biochem; 2006 Feb; 97(3):621-32. PubMed ID: 16215994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The myogenic factor Myf5 supports efficient skeletal muscle regeneration by enabling transient myoblast amplification.
    Ustanina S; Carvajal J; Rigby P; Braun T
    Stem Cells; 2007 Aug; 25(8):2006-16. PubMed ID: 17495111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IGF-II ameliorates the dystrophic phenotype and coordinately down-regulates programmed cell death.
    Smith J; Goldsmith C; Ward A; LeDieu R
    Cell Death Differ; 2000 Nov; 7(11):1109-18. PubMed ID: 11139285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Muscle regeneration in mdx mouse, and a trial of normal myoblast transfer into regenerating dystrophic muscle].
    Takemitsu M; Arahata K; Nonaka I
    Rinsho Shinkeigaku; 1990 Oct; 30(10):1066-72. PubMed ID: 2279357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel quantitative morphometry approach to assess regeneration in dystrophic skeletal muscle.
    Buttgereit A; Weber C; Friedrich O
    Neuromuscul Disord; 2014 Jul; 24(7):596-603. PubMed ID: 24880993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse.
    Morgan JE; Hoffman EP; Partridge TA
    J Cell Biol; 1990 Dec; 111(6 Pt 1):2437-49. PubMed ID: 2277066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration.
    Qu-Petersen Z; Deasy B; Jankowski R; Ikezawa M; Cummins J; Pruchnic R; Mytinger J; Cao B; Gates C; Wernig A; Huard J
    J Cell Biol; 2002 May; 157(5):851-64. PubMed ID: 12021255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of human muscle-derived cells to skeletal muscle regeneration in dystrophic host mice.
    Meng J; Adkin CF; Xu SW; Muntoni F; Morgan JE
    PLoS One; 2011 Mar; 6(3):e17454. PubMed ID: 21408080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of dystrophin and β-sarcoglycan significantly exacerbates the phenotype of laminin α2 chain-deficient animals.
    Gawlik KI; Holmberg J; Durbeej M
    Am J Pathol; 2014 Mar; 184(3):740-52. PubMed ID: 24393714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane.
    De Bari C; Dell'Accio F; Vandenabeele F; Vermeesch JR; Raymackers JM; Luyten FP
    J Cell Biol; 2003 Mar; 160(6):909-18. PubMed ID: 12629053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillaries with fenestrations around regenerating muscle fibers in the soleus muscle of the dystrophic (dy) mouse.
    Oki S; Desaki J; Matsuda Y; Shibata T; Okumura H
    J Orthop Sci; 1998; 3(1):67-70. PubMed ID: 9654557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deubiquitinating enzyme A20 negatively regulates NF-κB signaling in skeletal muscle in mdx mice.
    Charan RA; Hanson R; Clemens PR
    FASEB J; 2012 Feb; 26(2):587-95. PubMed ID: 22012122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of VEGF on the regenerative capacity of muscle stem cells in dystrophic skeletal muscle.
    Deasy BM; Feduska JM; Payne TR; Li Y; Ambrosio F; Huard J
    Mol Ther; 2009 Oct; 17(10):1788-98. PubMed ID: 19603004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The absence of dystrophin rather than muscle degeneration causes acetylcholine receptor cluster defects in dystrophic muscle.
    Kong J; Yang L; Li Q; Cao J; Yang J; Chen F; Wang Y; Zhang C
    Neuroreport; 2012 Jan; 23(2):82-7. PubMed ID: 22124255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calpain translocation during muscle fiber necrosis and regeneration in dystrophin-deficient mice.
    Spencer MJ; Tidball JG
    Exp Cell Res; 1996 Aug; 226(2):264-72. PubMed ID: 8806430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.