These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17481648)

  • 1. Formation of solid and hollow cuprous oxide nanocubes in water-in-oil microemulsions controlled by the yield of hydrated electrons.
    Chen Q; Shen X; Gao H
    J Colloid Interface Sci; 2007 Aug; 312(2):272-8. PubMed ID: 17481648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of nanoparticles in water-in-oil microemulsions controlled by the yield of hydrated electron: the controlled reduction of Cu2+.
    Chen Q; Shen X; Gao H
    J Colloid Interface Sci; 2007 Apr; 308(2):491-9. PubMed ID: 17286984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The effect of ethylene glycol on the morphology of Cu2O nanoparticles synthesized in w/o microemulsion by gamma-irradiation].
    Yang SG; Chen QD; Shen XH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Nov; 27(11):2155-9. PubMed ID: 18260382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transdermal delivery of hydrophobic and hydrophilic local anesthetics from o/w and w/o Brij 97-based microemulsions.
    Junyaprasert VB; Boonme P; Songkro S; Krauel K; Rades T
    J Pharm Pharm Sci; 2007; 10(3):288-98. PubMed ID: 17727792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic studies of Chromobacterium viscosum lipase in AOT water in oil microemulsions and gelatin microemulsion-based organogels.
    Jenta TR; Batts G; Rees GD; Robinson BH
    Biotechnol Bioeng; 1997 Jun; 54(5):416-27. PubMed ID: 18634134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrications of hollow nanocubes of Cu(2)O and Cu via reductive self-assembly of CuO nanocrystals.
    Teo JJ; Chang Y; Zeng HC
    Langmuir; 2006 Aug; 22(17):7369-77. PubMed ID: 16893240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnesium hydroxide nanoparticles synthesized in water-in-oil microemulsions.
    Wu J; Yan H; Zhang X; Wei L; Liu X; Xu B
    J Colloid Interface Sci; 2008 Aug; 324(1-2):167-71. PubMed ID: 18511061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase behavior, interfacial composition and thermodynamic properties of mixed surfactant (CTAB and Brij-58) derived w/o microemulsions with 1-butanol and 1-pentanol as cosurfactants and n-heptane and n-decane as oils.
    Mitra RK; Paul BK; Moulik SP
    J Colloid Interface Sci; 2006 Aug; 300(2):755-64. PubMed ID: 16677663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of counter ion radical (Br2(•-)) and its reactions in water-in-oil (CTAB or CPB)/n-butanol/cyclohexane/water) microemulsion.
    Guleria A; Singh AK; Sarkar SK; Mukherjee T; Adhikari S
    J Phys Chem B; 2011 Sep; 115(36):10615-21. PubMed ID: 21815623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of protein extraction from the solid state by water-in-oil microemulsions.
    Hayes DG
    Biotechnol Bioeng; 1997 Mar; 53(6):583-93. PubMed ID: 18634059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures.
    Cho YH; Kim S; Bae EK; Mok CK; Park J
    J Food Sci; 2008 Apr; 73(3):E115-21. PubMed ID: 18387105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides.
    Djekic L; Primorac M
    Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of changing the microstructure of a microemulsion on chemical reactivity.
    Cabaleiro-Lago C; García-Río L; Hervella P
    Langmuir; 2007 Sep; 23(19):9586-95. PubMed ID: 17696554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physicochemical studies of mixed surfactant microemulsions with isopropyl myristate as oil.
    Bardhan S; Kundu K; Saha SK; Paul BK
    J Colloid Interface Sci; 2013 Jul; 402():180-9. PubMed ID: 23664388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oil-in-water nanocontainers as low environmental impact cleaning tools for works of art: two case studies.
    Carretti E; Giorgi R; Berti D; Baglioni P
    Langmuir; 2007 May; 23(11):6396-403. PubMed ID: 17455965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of Cu Nanoparticles from Water-in-Oil Microemulsions.
    Qiu S; Dong J; Chen G
    J Colloid Interface Sci; 1999 Aug; 216(2):230-234. PubMed ID: 10421729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of solubilized water in the reverse ionic liquid microemulsion of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/benzene.
    Gao Y; Li N; Zheng L; Bai X; Yu L; Zhao X; Zhang J; Zhao M; Li Z
    J Phys Chem B; 2007 Mar; 111(10):2506-13. PubMed ID: 17305388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of Cu-Ni alloy nanocrystallites in water-in-oil microemulsions.
    Feng J; Zhang CP
    J Colloid Interface Sci; 2006 Jan; 293(2):414-20. PubMed ID: 16061244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase behavior of the mixtures of poly(oxyethylene) (10) stearyl ether (Brij-76), 1-butanol, isooctane, and mixed polar solvents II. Water and ethylene glycol (EG) or tetraethylene glycol (TEG).
    Nandy D; Mitra RK; Paul BK
    J Colloid Interface Sci; 2007 Jun; 310(1):229-39. PubMed ID: 17346729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ester aminolysis by morpholine in AOT-based water-in-oil microemulsions.
    García-Rio L; Mejuto JC; Pérez-Lorenzo M
    J Colloid Interface Sci; 2006 Sep; 301(2):624-30. PubMed ID: 16777123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.