These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

651 related articles for article (PubMed ID: 17481726)

  • 1. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering.
    Wang H; Li Y; Zuo Y; Li J; Ma S; Cheng L
    Biomaterials; 2007 Aug; 28(22):3338-48. PubMed ID: 17481726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y
    Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering.
    Guo H; Su J; Wei J; Kong H; Liu C
    Acta Biomater; 2009 Jan; 5(1):268-78. PubMed ID: 18722167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of hybrid porous biomimetic nano-hydroxyapatite/polyamide 6 and bone marrow-derived stem cell construct in repair of calvarial critical size defect.
    Khadka A; Li J; Li Y; Gao Y; Zuo Y; Ma Y
    J Craniofac Surg; 2011 Sep; 22(5):1852-8. PubMed ID: 21959450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of bone formation by BMP-7 transduced MSCs on biomimetic nano-hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects.
    Li J; Li Y; Ma S; Gao Y; Zuo Y; Hu J
    J Biomed Mater Res A; 2010 Dec; 95(4):973-81. PubMed ID: 20845497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering.
    Tong S; Xu DP; Liu ZM; Du Y; Wang XK
    Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study.
    Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M
    J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds.
    Zhang H; Ye XJ; Li JS
    Biomed Mater; 2009 Aug; 4(4):045007. PubMed ID: 19605959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.
    Zhang HX; Xiao GY; Wang X; Dong ZG; Ma ZY; Li L; Li YH; Pan X; Nie L
    J Biomed Mater Res A; 2015 Oct; 103(10):3250-8. PubMed ID: 25809455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial and biological properties of the gradient coating on polyamide substrate for bone substitute.
    Huang D; Niu L; Wei Y; Guo M; Zuo Y; Zou Q; Hu Y; Chen W; Li Y
    J R Soc Interface; 2014 Oct; 11(99):. PubMed ID: 25121648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber composite: biomechanical properties and biocompatibility.
    Qiao B; Li J; Zhu Q; Guo S; Qi X; Li W; Wu J; Liu Y; Jiang D
    Int J Nanomedicine; 2014; 9():1423-32. PubMed ID: 24669191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic perfusion bioreactor system for 3D culture of rat bone marrow mesenchymal stem cells on nanohydroxyapatite/polyamide 66 scaffold in vitro.
    Qian X; Yuan F; Zhimin Z; Anchun M
    J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):893-901. PubMed ID: 23362119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid for bone tissue engineering.
    Hu Y; Chen J; Fan T; Zhang Y; Zhao Y; Shi X; Zhang Q
    Colloids Surf B Biointerfaces; 2017 Sep; 157():93-100. PubMed ID: 28578273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.
    He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J
    Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of bioactive composite scaffolds by electrospinning for bone regeneration.
    Nandakumar A; Fernandes H; de Boer J; Moroni L; Habibovic P; van Blitterswijk CA
    Macromol Biosci; 2010 Nov; 10(11):1365-73. PubMed ID: 20799255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering.
    Zhang J; Nie J; Zhang Q; Li Y; Wang Z; Hu Q
    J Biomater Sci Polym Ed; 2014; 25(1):61-74. PubMed ID: 24053536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells.
    Gandhimathi C; Venugopal JR; Tham AY; Ramakrishna S; Kumar SD
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():776-785. PubMed ID: 25687008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of biomimetic scaffold of gelatin-hydroxyapatite crosslink as a novel scaffold for tissue engineering: biocompatibility evaluation with human PDL fibroblasts, human mesenchymal stromal cells, and primary bone cells.
    Rungsiyanont S; Dhanesuan N; Swasdison S; Kasugai S
    J Biomater Appl; 2012 Jul; 27(1):47-54. PubMed ID: 21343214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.