These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 17481757)
1. Improved PCR-DGGE for high resolution diversity screening of complex sulfate-reducing prokaryotic communities in soils and sediments. Miletto M; Bodelier PL; Laanbroek HJ J Microbiol Methods; 2007 Jul; 70(1):103-11. PubMed ID: 17481757 [TBL] [Abstract][Full Text] [Related]
2. DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. Geets J; Borremans B; Diels L; Springael D; Vangronsveld J; van der Lelie D; Vanbroekhoven K J Microbiol Methods; 2006 Aug; 66(2):194-205. PubMed ID: 16337704 [TBL] [Abstract][Full Text] [Related]
3. Direct analysis of sulfate reducing bacterial communities in gas hydrate-impacted marine sediments by PCR-DGGE. Bagwell CE; Formolo M; Ye Q; Yeager CM; Lyons TW; Zhang CL J Basic Microbiol; 2009 Sep; 49 Suppl 1():S87-92. PubMed ID: 19322839 [TBL] [Abstract][Full Text] [Related]
4. Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. Leloup J; Quillet L; Berthe T; Petit F FEMS Microbiol Ecol; 2006 Feb; 55(2):230-8. PubMed ID: 16420631 [TBL] [Abstract][Full Text] [Related]
5. Impact of copper on the abundance and diversity of sulfate-reducing prokaryotes in two chilean marine sediments. Besaury L; Ouddane B; Pavissich JP; Dubrulle-Brunaud C; González B; Quillet L Mar Pollut Bull; 2012 Oct; 64(10):2135-45. PubMed ID: 22921896 [TBL] [Abstract][Full Text] [Related]
6. Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments, Southern China. Jiang L; Zheng Y; Peng X; Zhou H; Zhang C; Xiao X; Wang F FEMS Microbiol Ecol; 2009 Nov; 70(2):93-106. PubMed ID: 19744241 [TBL] [Abstract][Full Text] [Related]
7. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [TBL] [Abstract][Full Text] [Related]
8. Rapid detection and quantification of bisulfite reductase genes in oil field samples using real-time PCR. Agrawal A; Lal B FEMS Microbiol Ecol; 2009 Aug; 69(2):301-12. PubMed ID: 19527290 [TBL] [Abstract][Full Text] [Related]
9. Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Bahr M; Crump BC; Klepac-Ceraj V; Teske A; Sogin ML; Hobbie JE Environ Microbiol; 2005 Aug; 7(8):1175-85. PubMed ID: 16011754 [TBL] [Abstract][Full Text] [Related]
10. Acinetobacter diversity in environmental samples assessed by 16S rRNA gene PCR-DGGE fingerprinting. Vanbroekhoven K; Ryngaert A; Wattiau P; Mot R; Springael D FEMS Microbiol Ecol; 2004 Oct; 50(1):37-50. PubMed ID: 19712375 [TBL] [Abstract][Full Text] [Related]
11. Sulfate-reducing bacteria in leachate-polluted aquifers along the shore of the East China Sea. Wu XJ; Pan JL; Liu XL; Tan J; Li DT; Yang H Can J Microbiol; 2009 Jul; 55(7):818-28. PubMed ID: 19767854 [TBL] [Abstract][Full Text] [Related]
12. Molecular analysis of the metabolic rates of discrete subsurface populations of sulfate reducers. Miletto M; Williams KH; N'Guessan AL; Lovley DR Appl Environ Microbiol; 2011 Sep; 77(18):6502-9. PubMed ID: 21764959 [TBL] [Abstract][Full Text] [Related]
13. High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Klepac-Ceraj V; Bahr M; Crump BC; Teske AP; Hobbie JE; Polz MF Environ Microbiol; 2004 Jul; 6(7):686-98. PubMed ID: 15186347 [TBL] [Abstract][Full Text] [Related]
14. Quantitative improvement of 16S rDNA DGGE analysis for soil bacterial community using real-time PCR. Ahn JH; Kim YJ; Kim T; Song HG; Kang C; Ka JO J Microbiol Methods; 2009 Aug; 78(2):216-22. PubMed ID: 19523498 [TBL] [Abstract][Full Text] [Related]
15. Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. Demergasso C; Casamayor EO; Chong G; Galleguillos P; Escudero L; Pedrós-Alió C FEMS Microbiol Ecol; 2004 Apr; 48(1):57-69. PubMed ID: 19712431 [TBL] [Abstract][Full Text] [Related]
16. Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). Kjeldsen KU; Loy A; Jakobsen TF; Thomsen TR; Wagner M; Ingvorsen K FEMS Microbiol Ecol; 2007 May; 60(2):287-98. PubMed ID: 17367515 [TBL] [Abstract][Full Text] [Related]
17. Effect of sulfate on methanogenic communities that degrade unsaturated and saturated long-chain fatty acids (LCFA). Sousa DZ; Alves JI; Alves MM; Smidt H; Stams AJ Environ Microbiol; 2009 Jan; 11(1):68-80. PubMed ID: 18783383 [TBL] [Abstract][Full Text] [Related]
18. Microorganisms with novel dissimilatory (bi)sulfite reductase genes are widespread and part of the core microbiota in low-sulfate peatlands. Steger D; Wentrup C; Braunegger C; Deevong P; Hofer M; Richter A; Baranyi C; Pester M; Wagner M; Loy A Appl Environ Microbiol; 2011 Feb; 77(4):1231-42. PubMed ID: 21169452 [TBL] [Abstract][Full Text] [Related]
19. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Leloup J; Fossing H; Kohls K; Holmkvist L; Borowski C; Jørgensen BB Environ Microbiol; 2009 May; 11(5):1278-91. PubMed ID: 19220398 [TBL] [Abstract][Full Text] [Related]
20. Evidence of the activity of dissimilatory sulfate-reducing prokaryotes in nonsulfidogenic tropical mobile muds. Madrid VM; Aller RC; Aller JY; Chistoserdov AY FEMS Microbiol Ecol; 2006 Aug; 57(2):169-81. PubMed ID: 16867136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]