BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 17481856)

  • 1. Control of Myf5 activation in adult skeletal myonuclei requires ERK signalling.
    Perez-Ruiz A; Gnocchi VF; Zammit PS
    Cell Signal; 2007 Aug; 19(8):1671-80. PubMed ID: 17481856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The A17 enhancer directs expression of Myf5 to muscle satellite cells but Mrf4 to myonuclei.
    Chang TH; Vincent SD; Buckingham ME; Zammit PS
    Dev Dyn; 2007 Dec; 236(12):3419-26. PubMed ID: 17948300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for the myogenic determination gene Myf5 in adult regenerative myogenesis.
    Gayraud-Morel B; Chrétien F; Flamant P; Gomès D; Zammit PS; Tajbakhsh S
    Dev Biol; 2007 Dec; 312(1):13-28. PubMed ID: 17961534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular regulation of muscle stem cell function.
    Rudnicki MA; Le Grand F; McKinnell I; Kuang S
    Cold Spring Harb Symp Quant Biol; 2008; 73():323-31. PubMed ID: 19329572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of the calcineurin and CaMK signaling pathways in fast-to-slow fiber type transformation of cultured adult mouse skeletal muscle fibers.
    Mu X; Brown LD; Liu Y; Schneider MF
    Physiol Genomics; 2007 Aug; 30(3):300-12. PubMed ID: 17473216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced expression of MYF5 and MYOD1 in fibroblast cells via the forced expression of bos taurus MYF5.
    Nie YW; Ding XB; Ge XG; Fan HL; Liu ZW; Guo H
    Cell Biol Int; 2013 Sep; 37(9):972-6. PubMed ID: 23640900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions.
    Ishibashi J; Perry RL; Asakura A; Rudnicki MA
    J Cell Biol; 2005 Nov; 171(3):471-82. PubMed ID: 16275751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+/calmodulin-dependent transcriptional pathways: potential mediators of skeletal muscle growth and development.
    Al-Shanti N; Stewart CE
    Biol Rev Camb Philos Soc; 2009 Nov; 84(4):637-52. PubMed ID: 19725819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrin alpha6beta1-laminin interactions regulate early myotome formation in the mouse embryo.
    Bajanca F; Luz M; Raymond K; Martins GG; Sonnenberg A; Tajbakhsh S; Buckingham M; Thorsteinsdóttir S
    Development; 2006 May; 133(9):1635-44. PubMed ID: 16554364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The regulatory mechanisms that underlie inappropriate transcription of the myogenic determination gene Myf5 in the central nervous system.
    Daubas P; Crist CG; Bajard L; Relaix F; Pecnard E; Rocancourt D; Buckingham M
    Dev Biol; 2009 Mar; 327(1):71-82. PubMed ID: 19100730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different autonomous myogenic cell populations revealed by ablation of Myf5-expressing cells during mouse embryogenesis.
    Gensch N; Borchardt T; Schneider A; Riethmacher D; Braun T
    Development; 2008 May; 135(9):1597-604. PubMed ID: 18367555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myf5 expression in satellite cells and spindles in adult muscle is controlled by separate genetic elements.
    Zammit PS; Carvajal JJ; Golding JP; Morgan JE; Summerbell D; Zolnerciks J; Partridge TA; Rigby PW; Beauchamp JR
    Dev Biol; 2004 Sep; 273(2):454-65. PubMed ID: 15328025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells.
    Gayraud-Morel B; Chrétien F; Jory A; Sambasivan R; Negroni E; Flamant P; Soubigou G; Coppée JY; Di Santo J; Cumano A; Mouly V; Tajbakhsh S
    J Cell Sci; 2012 Apr; 125(Pt 7):1738-49. PubMed ID: 22366456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A calcineurin- and NFAT-dependent pathway regulates Myf5 gene expression in skeletal muscle reserve cells.
    Friday BB; Pavlath GK
    J Cell Sci; 2001 Jan; 114(Pt 2):303-10. PubMed ID: 11148132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The p38 MAPK signaling pathway: a major regulator of skeletal muscle development.
    Keren A; Tamir Y; Bengal E
    Mol Cell Endocrinol; 2006 Jun; 252(1-2):224-30. PubMed ID: 16644098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein phosphatase 2A-negative regulation of the protective signaling pathway of Ca2+/CaM-dependent ERK activation in cerebral ischemia.
    Zhao J; Wu HW; Chen YJ; Tian HP; Li LX; Han X; Guo J
    J Neurosci Res; 2008 Sep; 86(12):2733-45. PubMed ID: 18478546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MyoD, Myf5, and the calcineurin pathway activate the developmental myosin heavy chain genes.
    Beylkin DH; Allen DL; Leinwand LA
    Dev Biol; 2006 Jun; 294(2):541-53. PubMed ID: 16584724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The signalling profile of recombinant human orexin-2 receptor.
    Tang J; Chen J; Ramanjaneya M; Punn A; Conner AC; Randeva HS
    Cell Signal; 2008 Sep; 20(9):1651-61. PubMed ID: 18599270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The EGF receptor activates ERK but not JNK Ras-dependently in basal conditions but ERK and JNK activation pathways are predominantly Ras-independent during cardiomyocyte stretch.
    Duquesnes N; Vincent F; Morel E; Lezoualc'h F; Crozatier B
    Int J Biochem Cell Biol; 2009 May; 41(5):1173-81. PubMed ID: 19015044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of calcium-dependent kinases and epidermal growth factor receptor regulate muscarinic acetylcholine receptor-mediated MAPK/ERK activation in thyroid epithelial cells.
    Montiel M; Quesada J; Jiménez E
    Cell Signal; 2007 Oct; 19(10):2138-46. PubMed ID: 17643958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.