These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17481950)

  • 41. Signature-tagged mutagenesis: technical advances in a negative selection method for virulence gene identification.
    Saenz HL; Dehio C
    Curr Opin Microbiol; 2005 Oct; 8(5):612-9. PubMed ID: 16126452
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Toxicogenomic analysis of sodium hypochlorite antimicrobial mechanisms in Pseudomonas aeruginosa.
    Small DA; Chang W; Toghrol F; Bentley WE
    Appl Microbiol Biotechnol; 2007 Feb; 74(1):176-85. PubMed ID: 17021869
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PscF is a major component of the Pseudomonas aeruginosa type III secretion needle.
    Pastor A; Chabert J; Louwagie M; Garin J; Attree I
    FEMS Microbiol Lett; 2005 Dec; 253(1):95-101. PubMed ID: 16239085
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Roles of RcsA, an AhpD Family Protein, in Reactive Chlorine Stress Resistance and Virulence in Pseudomonas aeruginosa.
    Nontaleerak B; Duang-Nkern J; Wongsaroj L; Trinachartvanit W; Romsang A; Mongkolsuk S
    Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32801171
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Essential genes in the infection model of Pseudomonas aeruginosa-PCR-based signature-tagged mutagenesis.
    Kukavica-Ibrulj I; Levesque RC
    Methods Mol Biol; 2015; 1279():97-123. PubMed ID: 25636615
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors.
    Rahme LG; Tan MW; Le L; Wong SM; Tompkins RG; Calderwood SB; Ausubel FM
    Proc Natl Acad Sci U S A; 1997 Nov; 94(24):13245-50. PubMed ID: 9371831
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Key role of an ADP - ribose - dependent transcriptional regulator of NAD metabolism for fitness and virulence of Pseudomonas aeruginosa.
    Okon E; Dethlefsen S; Pelnikevich A; Barneveld AV; Munder A; Tümmler B
    Int J Med Microbiol; 2017 Jan; 307(1):83-94. PubMed ID: 27865623
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of low-temperature-regulated genes in the fire blight pathogen Erwinia amylovora.
    Goyer C; Ullrich MS
    Can J Microbiol; 2006 May; 52(5):468-75. PubMed ID: 16699572
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The pathogen Pseudomonas aeruginosa negatively affects the attraction response of the nematode Caenorhabditis elegans to bacteria.
    Laws TR; Atkins HS; Atkins TP; Titball RW
    Microb Pathog; 2006 Jun; 40(6):293-7. PubMed ID: 16678995
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulatory role of PopN and its interacting partners in type III secretion of Pseudomonas aeruginosa.
    Yang H; Shan Z; Kim J; Wu W; Lian W; Zeng L; Xing L; Jin S
    J Bacteriol; 2007 Apr; 189(7):2599-609. PubMed ID: 17237176
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Signature-tagged mutagenesis.
    Kukavica-Ibrulj I; Levesque RC
    Methods Mol Biol; 2014; 1149():541-54. PubMed ID: 24818931
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis.
    Tan MW; Mahajan-Miklos S; Ausubel FM
    Proc Natl Acad Sci U S A; 1999 Jan; 96(2):715-20. PubMed ID: 9892699
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discovery and biophysical characterization of 2-amino-oxadiazoles as novel antagonists of PqsR, an important regulator of Pseudomonas aeruginosa virulence.
    Zender M; Klein T; Henn C; Kirsch B; Maurer CK; Kail D; Ritter C; Dolezal O; Steinbach A; Hartmann RW
    J Med Chem; 2013 Sep; 56(17):6761-74. PubMed ID: 23919758
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of Pseudomonas aeruginosa genes required for epithelial cell injury.
    Kang PJ; Hauser AR; Apodaca G; Fleiszig SM; Wiener-Kronish J; Mostov K; Engel JN
    Mol Microbiol; 1997 Jun; 24(6):1249-62. PubMed ID: 9218773
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Massively parallel mutant selection identifies genetic determinants of
    Miles J; Lozano GL; Rajendhran J; Stabb EV; Handelsman J; Broderick NA
    mSystems; 2024 Mar; 9(3):e0131723. PubMed ID: 38380971
    [No Abstract]   [Full Text] [Related]  

  • 56. Dictyostelium as host model for pathogenesis.
    Steinert M; Heuner K
    Cell Microbiol; 2005 Mar; 7(3):307-14. PubMed ID: 15679834
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of autoinducers in gene regulation and virulence of Pseudomonas aeruginosa.
    Passador L
    Methods Enzymol; 2002; 358():427-51. PubMed ID: 12474405
    [No Abstract]   [Full Text] [Related]  

  • 58. A novel genomics approach for the identification of drug targets in pathogens, with special reference to Pseudomonas aeruginosa.
    Sakharkar KR; Sakharkar MK; Chow VT
    In Silico Biol; 2004; 4(3):355-60. PubMed ID: 15724285
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Signature-tagged mutagenesis.
    Bakshi S; Sun YH; Chalmers R; Tang CM
    Methods Mol Med; 2001; 67():679-92. PubMed ID: 21337173
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Whole genome scan for habitat-specific genes by signature-tagged mutagenesis.
    Hensel M
    Electrophoresis; 1998 Apr; 19(4):608-12. PubMed ID: 9588811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.