BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1748206)

  • 1. Intraspinal sprouting of calcitonin gene-related peptide containing primary afferents after deafferentation in the rat.
    McNeill DL; Carlton SM; Hulsebosch CE
    Exp Neurol; 1991 Dec; 114(3):321-9. PubMed ID: 1748206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Denervation-induced intraspinal synaptogenesis of calcitonin gene-related peptide containing primary afferent terminals.
    McNeill DL; Carlton SM; Coggeshall RE; Hulsebosch CE
    J Comp Neurol; 1990 Jun; 296(2):263-8. PubMed ID: 2358535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regenerative effect of human recombinant NGF on capsaicin-lesioned sensory neurons in the adult rat.
    Schicho R; Skofitsch G; Donnerer J
    Brain Res; 1999 Jan; 815(1):60-9. PubMed ID: 9974123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraspinal sprouting of rat primary afferents after deafferentation.
    McNeill DL; Hulsebosch CE
    Neurosci Lett; 1987 Oct; 81(1-2):57-62. PubMed ID: 3696474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental alterations in nociceptive threshold, immunoreactive calcitonin gene-related peptide and substance P, and fluoride-resistant acid phosphatase in neonatally capsaicin-treated rats.
    Hammond DL; Ruda MA
    J Comp Neurol; 1991 Oct; 312(3):436-50. PubMed ID: 1721077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L1 cell adhesion molecule is not required for small-diameter primary afferent sprouting after deafferentation.
    Runyan SA; Roy RR; Zhong H; Phelps PE
    Neuroscience; 2007 Dec; 150(4):959-69. PubMed ID: 18022323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of calcitonin gene-related peptide-like immunoreactivity in the cat dorsal spinal cord and dorsal root ganglia provide evidence for a multisegmental projection of nociceptive C-fiber primary afferents.
    Traub RJ; Allen B; Humphrey E; Ruda MA
    J Comp Neurol; 1990 Dec; 302(3):562-74. PubMed ID: 1702117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of function in dorsal horn following partial deafferentation.
    Pubols LM; Goldberger ME
    J Neurophysiol; 1980 Jan; 43(1):102-17. PubMed ID: 7351546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural studies on peptides in the dorsal horn of the spinal cord--I. Co-existence of galanin with other peptides in primary afferents in normal rats.
    Zhang X; Nicholas AP; Hökfelt T
    Neuroscience; 1993 Nov; 57(2):365-84. PubMed ID: 7509467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcitonin gene-related peptide immunoreactivity in the cat lumbosacral spinal cord and the effects of multiple dorsal rhizotomies.
    Traub RJ; Solodkin A; Ruda MA
    J Comp Neurol; 1989 Sep; 287(2):225-37. PubMed ID: 2794127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity of dorsal root and descending serotoninergic projections after partial deafferentation of the adult rat spinal cord.
    Polistina DC; Murray M; Goldberger ME
    J Comp Neurol; 1990 Sep; 299(3):349-63. PubMed ID: 2172329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal cord injury and anti-NGF treatment results in changes in CGRP density and distribution in the dorsal horn in the rat.
    Christensen MD; Hulsebosch CE
    Exp Neurol; 1997 Oct; 147(2):463-75. PubMed ID: 9344570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of multiple dorsal rhizotomies on calcitonin gene-related peptide-like immunoreactivity in the lumbosacral dorsal spinal cord of the cat: a radioimmunoassay analysis.
    Traub RJ; Iadarola MJ; Ruda MA
    Peptides; 1989; 10(5):979-83. PubMed ID: 2608558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of sprouting and its presence after lesions of the cat spinal cord.
    Goldberger ME; Murray M
    Brain Res; 1982 Jun; 241(2):227-39. PubMed ID: 7104712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of serotonergic immunoreactive pattern in the dorsal horn of the rat spinal cord following dorsal root rhizotomy.
    Marlier L; Poulat P; Rajaofetra N; Privat A
    Neurosci Lett; 1991 Jul; 128(1):9-12. PubMed ID: 1922953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructural studies on peptides in the dorsal horn of the rat spinal cord--III. Effects of peripheral axotomy with special reference to galanin.
    Zhang X; Bean AJ; Wiesenfeld-Hallin Z; Xu XJ; Hökfelt T
    Neuroscience; 1995 Feb; 64(4):893-915. PubMed ID: 7538640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sprouting of primary afferent fibers after spinal cord transection in the rat.
    Krenz NR; Weaver LC
    Neuroscience; 1998 Jul; 85(2):443-58. PubMed ID: 9622243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proliferation of SP- and 5HT-containing terminals in lamina II of rat spinal cord following dorsal rhizotomy: quantitative EM-immunocytochemical studies.
    Zhang B; Goldberger ME; Murray M
    Exp Neurol; 1993 Sep; 123(1):51-63. PubMed ID: 7691648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deafferentation-induced changes in neuropeptides of the adult rat dorsal horn following pronase injection of the sciatic nerve.
    el-Bohy A; LaMotte CC
    J Comp Neurol; 1993 Oct; 336(4):545-54. PubMed ID: 7503999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fos-like immunoreactivity in the rat spinal cord induced by formalin injection in the forelimb to gauge possible plasticity of primary afferent fibers following partial deafferentation.
    Abbadie C; Lombard MC; Morain F; Besson JM
    Restor Neurol Neurosci; 1994 Jan; 6(3):195-207. PubMed ID: 21551750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.