BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 17482126)

  • 1. Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths.
    Dickerman RD; Reynolds AS; Stevens Q; Zigler J
    Spine J; 2007; 7(3):384. PubMed ID: 17482126
    [No Abstract]   [Full Text] [Related]  

  • 2. Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths.
    Johnston TL; Karaikovic EE; Lautenschlager EP; Marcu D
    Spine J; 2006; 6(6):667-72. PubMed ID: 17088197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screw orientation and plate type (variable- vs. fixed-angle) effect strength of fixation for in vitro biomechanical testing of the Synthes CSLP.
    Dipaola CP; Jacobson JA; Awad H; Conrad BP; Rechtine GR
    Spine J; 2008; 8(5):717-22. PubMed ID: 17983846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical comparison of cervical transfacet pedicle screws versus pedicle screws.
    Liu GY; Xu RM; Ma WH; Sun SH; Huang L; Ying JW; Jiang WY
    Chin Med J (Engl); 2008 Aug; 121(15):1390-3. PubMed ID: 18959115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical evaluation of parasagittal occipital plating: screw load sharing analysis.
    Frush TJ; Fisher TJ; Ensminger SC; Truumees E; Demetropoulos CK
    Spine (Phila Pa 1976); 2009 Apr; 34(9):877-84. PubMed ID: 19531996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of pullout strength for pedicle screws of different designs: a study using tapped and untapped pilot holes.
    Pfeiffer FM; Abernathie DL; Smith DE
    Spine (Phila Pa 1976); 2006 Nov; 31(23):E867-70. PubMed ID: 17077722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A static mechanical comparison between two transarticular internal fixation techniques in the lower cervical spine].
    Liu GY; Xu RM; Ma WH; Sun SH; Huang L; Yin JW; Jiang WY
    Zhonghua Yi Xue Za Zhi; 2007 Jun; 87(23):1599-602. PubMed ID: 17803847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical bone trajectory for lumbar pedicle screws.
    Santoni BG; Hynes RA; McGilvray KC; Rodriguez-Canessa G; Lyons AS; Henson MA; Womack WJ; Puttlitz CM
    Spine J; 2009 May; 9(5):366-73. PubMed ID: 18790684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fixation strength of unicortical versus bicortical C1-C2 transarticular screws.
    Cyr SJ; Currier BL; Eck JC; Foy A; Chen Q; Larson DR; Yaszemski MJ; An KN
    Spine J; 2008; 8(4):661-5. PubMed ID: 17526435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screw design alters the effects of stress relaxation on pullout.
    Inceoğlu S; Kilinçer C; McLain RF
    Biomed Mater Eng; 2008; 18(2):53-60. PubMed ID: 18408256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical comparison of unicortical versus bicortical C1 lateral mass screw fixation.
    Eck JC; Walker MP; Currier BL; Chen Q; Yaszemski MJ; An KN
    J Spinal Disord Tech; 2007 Oct; 20(7):505-8. PubMed ID: 17912127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative anatomy of subaxial cervical lateral mass: an analysis of safe screw lengths for Roy-Camille and Magerl techniques.
    Dickerman RD; Reynolds A; Tackett JL
    Spine (Phila Pa 1976); 2008 Oct; 33(21):2369; author reply 2369-70. PubMed ID: 18827706
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of insertional temperature on the pullout strength of pedicle screws inserted into thoracic vertebrae: an in vitro calf study.
    Tosun B; Snmazçelik T; Buluç L; Cürgül I; Sarlak AY
    Spine (Phila Pa 1976); 2008 Sep; 33(19):E667-72. PubMed ID: 18758347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental analysis of screw hold as judged by operators v pullout strength.
    Siddiqui AA; Blakemore ME; Tarzi I
    Injury; 2005 Jan; 36(1):55-9. PubMed ID: 15589914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses.
    Chao CK; Hsu CC; Wang JL; Lin J
    J Spinal Disord Tech; 2008 Apr; 21(2):130-8. PubMed ID: 18391719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Open posterior reduction and stabilization of a C1 burst fracture using mono-axial screws.
    Chung SK; Park JT; Lim J; Park J
    Spine (Phila Pa 1976); 2011 Mar; 36(5):E301-6. PubMed ID: 21325928
    [No Abstract]   [Full Text] [Related]  

  • 17. Biomechanical pullout strength and stability of the cervical artificial pedicle screw.
    Barnes AH; Eguizabal JA; Acosta FL; Lotz JC; Buckley JM; Ames CP
    Spine (Phila Pa 1976); 2009 Jan; 34(1):E16-20. PubMed ID: 19127143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical differences between transfacet and lateral mass screw-rod constructs for multilevel posterior cervical spine stabilization.
    Miyanji F; Mahar A; Oka R; Newton P
    Spine (Phila Pa 1976); 2008 Nov; 33(23):E865-9. PubMed ID: 18978579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of two techniques for transarticular screw implantation in the subaxial cervical spine.
    Zhao L; Xu R; Liu J; Konrad J; Ma W; Jiang W; Li M; Xia H; Hua Q; Wang G
    J Spinal Disord Tech; 2011 Apr; 24(2):126-31. PubMed ID: 20625323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical analysis of different techniques in revision spinal instrumentation: larger diameter screws versus cement augmentation.
    Kiner DW; Wybo CD; Sterba W; Yeni YN; Bartol SW; Vaidya R
    Spine (Phila Pa 1976); 2008 Nov; 33(24):2618-22. PubMed ID: 19011543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.