These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 17482242)

  • 21. A collocation--Galerkin finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):743-57. PubMed ID: 7927397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative simulation of excitation and body surface electrocardiogram with isotropic and anisotropic computer heart models.
    Wei D; Okazaki O; Harumi K; Harasawa E; Hosaka H
    IEEE Trans Biomed Eng; 1995 Apr; 42(4):343-57. PubMed ID: 7729834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computer model of excitation and recovery in the anisotropic myocardium. I. Rectangular and cubic arrays of excitable elements.
    Leon LJ; Horácek BM
    J Electrocardiol; 1991 Jan; 24(1):1-15. PubMed ID: 2056264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrotonic cell-cell interactions in cardiac tissue: effects on action potential propagation and repolarization.
    Rudy Y
    Ann N Y Acad Sci; 2005 Jun; 1047():308-13. PubMed ID: 16093506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transverse propagation in an expanded PSpice model for cardiac muscle with gap-junction ion channels.
    Ramasamy L; Sperelakis N
    Biomed Eng Online; 2006 Jul; 5():46. PubMed ID: 16875501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of barriers on propagation of action potentials in two-dimensional cardiac tissue. A computer simulation study.
    Maglaveras N; Offner F; van Capelle FJ; Allessie MA; Sahakian AV
    J Electrocardiol; 1995 Jan; 28(1):17-31. PubMed ID: 7897334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Propagating depolarization in anisotropic human and canine cardiac muscle: apparent directional differences in membrane capacitance. A simplified model for selective directional effects of modifying the sodium conductance on Vmax, tau foot, and the propagation safety factor.
    Spach MS; Dolber PC; Heidlage JF; Kootsey JM; Johnson EA
    Circ Res; 1987 Feb; 60(2):206-19. PubMed ID: 2436826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Change in conduction velocity due to fiber curvature in cultured neonatal rat ventricular myocytes.
    Bourgeois EB; Fast VG; Collins RL; Gladden JD; Rogers JM
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):855-61. PubMed ID: 19272891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gap junction channels and cardiac impulse propagation.
    Desplantez T; Dupont E; Severs NJ; Weingart R
    J Membr Biol; 2007 Aug; 218(1-3):13-28. PubMed ID: 17661127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Propagation of pacemaker activity.
    Joyner RW; Wilders R; Wagner MB
    Med Biol Eng Comput; 2007 Feb; 45(2):177-87. PubMed ID: 16951930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rate-dependent propagation of cardiac action potentials in a one-dimensional fiber.
    Cain JW; Tolkacheva EG; Schaeffer DG; Gauthier DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061906. PubMed ID: 15697401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conductive bridges in cardiac tissue: a beneficial role or an arrhythmogenic substrate?
    Rudy Y
    Circ Res; 2004 Apr; 94(6):709-11. PubMed ID: 15059940
    [No Abstract]   [Full Text] [Related]  

  • 33. Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models.
    Colli Franzone P; Pavarino LF; Taccardi B
    Math Biosci; 2005 Sep; 197(1):35-66. PubMed ID: 16009380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring anodal and cathodal make and break cardiac excitation mechanisms in a 3D anisotropic bidomain model.
    Colli-Franzone P; Pavarino LF; Scacchi S
    Math Biosci; 2011 Apr; 230(2):96-114. PubMed ID: 21329705
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How to explain why "unequal anisotropy ratios" is important using pictures but no mathematics.
    Roth BJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():580-3. PubMed ID: 17946406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intramural wave propagation in cardiac tissue: asymptotic solutions and cusp waves.
    Bernus O; Wellner M; Pertsov AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061913. PubMed ID: 15697408
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incorporating histology into a 3D microscopic computer model of myocardium to study propagation at a cellular level.
    Stinstra J; MacLeod R; Henriquez C
    Ann Biomed Eng; 2010 Apr; 38(4):1399-414. PubMed ID: 20049638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From myocardial cell models to action potential propagation.
    Pollard AE
    J Electrocardiol; 2003; 36 Suppl():43-9. PubMed ID: 14716591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer model of excitation and recovery in the anisotropic myocardium. III. Arrhythmogenic conditions in the simplified left ventricle.
    Leon LJ; Horácek BM
    J Electrocardiol; 1991 Jan; 24(1):33-41. PubMed ID: 2056266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cardiomyocyte cultures with controlled macroscopic anisotropy: a model for functional electrophysiological studies of cardiac muscle.
    Bursac N; Parker KK; Iravanian S; Tung L
    Circ Res; 2002 Dec; 91(12):e45-54. PubMed ID: 12480825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.