These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 17482433)
1. Insulin resistance and the mitochondrial link. Lessons from cultured human myotubes. Gaster M Biochim Biophys Acta; 2007 Jul; 1772(7):755-65. PubMed ID: 17482433 [TBL] [Abstract][Full Text] [Related]
2. Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: evidence for an intrinsic oxidative enzyme defect. Ortenblad N; Mogensen M; Petersen I; Højlund K; Levin K; Sahlin K; Beck-Nielsen H; Gaster M Biochim Biophys Acta; 2005 Jun; 1741(1-2):206-14. PubMed ID: 15894466 [TBL] [Abstract][Full Text] [Related]
3. Triacylglycerol accumulation is not primarily affected in myotubes established from type 2 diabetic subjects. Gaster M; Beck-Nielsen H Biochim Biophys Acta; 2006 Jan; 1761(1):100-10. PubMed ID: 16442843 [TBL] [Abstract][Full Text] [Related]
4. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. Højlund K Dan Med J; 2014 Jul; 61(7):B4890. PubMed ID: 25123125 [TBL] [Abstract][Full Text] [Related]
5. Abnormal metabolism flexibility in response to high palmitate concentrations in myotubes derived from obese type 2 diabetic patients. Kitzmann M; Lantier L; Hébrard S; Mercier J; Foretz M; Aguer C Biochim Biophys Acta; 2011 Apr; 1812(4):423-30. PubMed ID: 21172433 [TBL] [Abstract][Full Text] [Related]
6. Increased proton leak and SOD2 expression in myotubes from obese non-diabetic subjects with a family history of type 2 diabetes. Aguer C; Pasqua M; Thrush AB; Moffat C; McBurney M; Jardine K; Zhang R; Beauchamp B; Dent R; McPherson R; Harper ME Biochim Biophys Acta; 2013 Oct; 1832(10):1624-33. PubMed ID: 23685312 [TBL] [Abstract][Full Text] [Related]
7. Chronic hyperglycemia reduces substrate oxidation and impairs metabolic switching of human myotubes. Aas V; Hessvik NP; Wettergreen M; Hvammen AW; Hallén S; Thoresen GH; Rustan AC Biochim Biophys Acta; 2011 Jan; 1812(1):94-105. PubMed ID: 20888904 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial mass is inversely correlated to complete lipid oxidation in human myotubes. Gaster M Biochem Biophys Res Commun; 2011 Jan; 404(4):1023-8. PubMed ID: 21187069 [TBL] [Abstract][Full Text] [Related]
9. Reduced TCA flux in diabetic myotubes: A governing influence on the diabetic phenotype? Gaster M Biochem Biophys Res Commun; 2009 Oct; 387(4):651-5. PubMed ID: 19615969 [TBL] [Abstract][Full Text] [Related]
10. The diabetic phenotype is preserved in myotubes established from type 2 diabetic subjects: a critical appraisal. Gaster M APMIS; 2019 Jan; 127(1):3-26. PubMed ID: 30549138 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes. Wang CH; Wang CC; Huang HC; Wei YH FEBS J; 2013 Feb; 280(4):1039-50. PubMed ID: 23253816 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen peroxide production is not primarily increased in human myotubes established from type 2 diabetic subjects. Minet AD; Gaster M J Clin Endocrinol Metab; 2011 Sep; 96(9):E1486-90. PubMed ID: 21733990 [TBL] [Abstract][Full Text] [Related]
13. Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids. Corpeleijn E; Hessvik NP; Bakke SS; Levin K; Blaak EE; Thoresen GH; Gaster M; Rustan AC Am J Physiol Endocrinol Metab; 2010 Jul; 299(1):E14-22. PubMed ID: 20442319 [TBL] [Abstract][Full Text] [Related]
14. The reduced insulin-mediated glucose oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin--evidence from cultured myotubes. Gaster M; Beck-Nielsen H Biochim Biophys Acta; 2004 Sep; 1690(1):85-91. PubMed ID: 15337174 [TBL] [Abstract][Full Text] [Related]
15. Primary defects in lipolysis and insulin action in skeletal muscle cells from type 2 diabetic individuals. Kase ET; Feng YZ; Badin PM; Bakke SS; Laurens C; Coue M; Langin D; Gaster M; Thoresen GH; Rustan AC; Moro C Biochim Biophys Acta; 2015 Sep; 1851(9):1194-201. PubMed ID: 25819461 [TBL] [Abstract][Full Text] [Related]
16. Disruption of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Contributes to Muscle Insulin Resistance in Mice and Humans. Tubbs E; Chanon S; Robert M; Bendridi N; Bidaux G; Chauvin MA; Ji-Cao J; Durand C; Gauvrit-Ramette D; Vidal H; Lefai E; Rieusset J Diabetes; 2018 Apr; 67(4):636-650. PubMed ID: 29326365 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial dysfunction in type 2 diabetes and obesity. Højlund K; Mogensen M; Sahlin K; Beck-Nielsen H Endocrinol Metab Clin North Am; 2008 Sep; 37(3):713-31, x. PubMed ID: 18775360 [TBL] [Abstract][Full Text] [Related]
18. Saturated fatty acid-induced insulin resistance is associated with mitochondrial dysfunction in skeletal muscle cells. Hirabara SM; Curi R; Maechler P J Cell Physiol; 2010 Jan; 222(1):187-94. PubMed ID: 19780047 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial oxidative function and type 2 diabetes. Rabøl R; Boushel R; Dela F Appl Physiol Nutr Metab; 2006 Dec; 31(6):675-83. PubMed ID: 17213881 [TBL] [Abstract][Full Text] [Related]
20. Reduced lipid oxidation in myotubes established from obese and type 2 diabetic subjects. Gaster M Biochem Biophys Res Commun; 2009 May; 382(4):766-70. PubMed ID: 19324004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]