BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

769 related articles for article (PubMed ID: 17482504)

  • 1. Complexity of the heat stress response in plants.
    Kotak S; Larkindale J; Lee U; von Koskull-Döring P; Vierling E; Scharf KD
    Curr Opin Plant Biol; 2007 Jun; 10(3):310-6. PubMed ID: 17482504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Regulatory mechanisms of the heat-shock response in plants].
    Takahashi T; Komeda Y
    Tanpakushitsu Kakusan Koso; 1999 Nov; 44(15 Suppl):2173-8. PubMed ID: 10586653
    [No Abstract]   [Full Text] [Related]  

  • 3. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis.
    Charng YY; Liu HC; Liu NY; Chi WT; Wang CN; Chang SH; Wang TT
    Plant Physiol; 2007 Jan; 143(1):251-62. PubMed ID: 17085506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system.
    Yoshida T; Sakuma Y; Todaka D; Maruyama K; Qin F; Mizoi J; Kidokoro S; Fujita Y; Shinozaki K; Yamaguchi-Shinozaki K
    Biochem Biophys Res Commun; 2008 Apr; 368(3):515-21. PubMed ID: 18261981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth.
    Ogawa D; Yamaguchi K; Nishiuchi T
    J Exp Bot; 2007; 58(12):3373-83. PubMed ID: 17890230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response.
    Wang W; Vinocur B; Shoseyov O; Altman A
    Trends Plant Sci; 2004 May; 9(5):244-52. PubMed ID: 15130550
    [No Abstract]   [Full Text] [Related]  

  • 7. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis.
    Liu HC; Liao HT; Charng YY
    Plant Cell Environ; 2011 May; 34(5):738-51. PubMed ID: 21241330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations.
    Vinocur B; Altman A
    Curr Opin Biotechnol; 2005 Apr; 16(2):123-32. PubMed ID: 15831376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis.
    Schramm F; Larkindale J; Kiehlmann E; Ganguli A; Englich G; Vierling E; von Koskull-Döring P
    Plant J; 2008 Jan; 53(2):264-74. PubMed ID: 17999647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive electrophilic oxylipins trigger a heat stress-like response through HSFA1 transcription factors.
    Muench M; Hsin CH; Ferber E; Berger S; Mueller MJ
    J Exp Bot; 2016 Nov; 67(21):6139-6148. PubMed ID: 27811081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat shock factor 1 and heat shock proteins: critical partners in protection against acute cell injury.
    Christians ES; Yan LJ; Benjamin IJ
    Crit Care Med; 2002 Jan; 30(1 Suppl):S43-50. PubMed ID: 11782560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C. elegans STI-1, the homolog of Sti1/Hop, is involved in aging and stress response.
    Song HO; Lee W; An K; Lee HS; Cho JH; Park ZY; Ahnn J
    J Mol Biol; 2009 Jul; 390(4):604-17. PubMed ID: 19467242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of proteins associated with plant tolerance to heat stress.
    Huang B; Xu C
    J Integr Plant Biol; 2008 Oct; 50(10):1230-7. PubMed ID: 19017110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress.
    Wang X; Huang W; Liu J; Yang Z; Huang B
    Plant Biotechnol J; 2017 Feb; 15(2):237-248. PubMed ID: 27500592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms of the plant heat stress response.
    Qu AL; Ding YF; Jiang Q; Zhu C
    Biochem Biophys Res Commun; 2013 Mar; 432(2):203-7. PubMed ID: 23395681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The xenobiotic beta-aminobutyric acid enhances Arabidopsis thermotolerance.
    Zimmerli L; Hou BH; Tsai CH; Jakab G; Mauch-Mani B; Somerville S
    Plant J; 2008 Jan; 53(1):144-56. PubMed ID: 18047473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs.
    Meiri D; Breiman A
    Plant J; 2009 Aug; 59(3):387-99. PubMed ID: 19366428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis.
    Li C; Chen Q; Gao X; Qi B; Chen N; Xu S; Chen J; Wang X
    Sci China C Life Sci; 2005 Dec; 48(6):540-50. PubMed ID: 16483133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How high G+C Gram-positive bacteria and in particular bifidobacteria cope with heat stress: protein players and regulators.
    Ventura M; Canchaya C; Zhang Z; Bernini V; Fitzgerald GF; van Sinderen D
    FEMS Microbiol Rev; 2006 Sep; 30(5):734-59. PubMed ID: 16911042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.